موقعیت مکانی چشمه گاما-آشکارساز- حفره حفر شده بر کیفیت کشف مخازن نفتی به روش مونت کارلو

نوع مقاله : سایر مقالات

نویسندگان

1 دانشجو دکتری؛ دانشکده فیزیک و مهندسی هسته‌ای، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار؛ دانشکده فیزیک و مهندسی هسته‌ای، دانشگاه صنعتی شاهرود، شاهرود، ایران

10.22044/jrag.2021.9539.1284

چکیده

استفاده از اندرکنش پرتوهای گاما با مواد یک روش غیر مخرب و جدید برای بدست آوردن اطلاعات مفیدی همچون چگالی ماده می‌باشد. در این کار ما با استفاده از کد MCNP یک بلوکه متشکل از سنگ‌های رسوبی به همراه چهار حفره درون آن شبیه سازی نموده‌ایم که در هر کدام از این حفره‌ها یک آشکارساز قرار داده شده است. سپس با قرار دادن یک چشمه Cs137 در یکی از حفره‌ها و اضافه نمودن درصدهای مختلفی از آب و نفت به سنگ‌های رسوبی تشکیل دهنده بلوکه مقدار کنتراست را برای پرتوهای گامای خروجی و پس پراکنده شده بدست آورده‌ایم که تابع پاسخ آشکارساز درون حفره‌ای که روبه‌روی چشمه قرار گرفته است بیشتر از بقیه آشکارسازها بدست آمده است. کنتراست بدست آمده در بلوکه حاوی سنگ‌های رسوبی با چهل درصد نفت در حفره‌های اول تا چهارم به ترتیب برابر با 219.10- ، 354.85- ، 174.75- و 197.30- و برای آب 198.31- ، 330.87- ، 167.73- و 185.26- می‌باشد. با توجه به این موضوع که با حفر کردن چند حفره از هر دو روش گامای عبوری و پس پراکنده استفاده شده است می‌توان موقعیت مکانی بهتری را برای جایگاه آشکارساز بدست آورد. همچنین از مقادیر محاسبه شده مشخص است که کنتراست بدست آمده از حفره دوم (حفره‌ای که روبه‌روی چشمه است) از بقیه کنتراست‌ها بیشتر می-باشد که می‌توان گفت از لحاظ موقعیت دارای جایگاه بهتری نسبت به بقیه حفره‌ها می‌باشد، اما با توجه به کمیت D (تفاوت نسبی بین کنتراست‌های محاسبه شده برای نفت و آب به درصد) حفره اول نسبت به بقیه برتری دارد زیرا در آن با درصد ماده موجود در خاک کمتری می‌توان معادن را از یکدیگر تفکیک نمود.

کلیدواژه‌ها


توکلی عنبران، ح.، رضایی فرد، س.، 1399، کشف مخازن نفتی با استفاده از فعا‌ل‌سازی مواد به وسیله پرتوهای گاما به روش مونت کارلو، پژوهش­های ژئوفیزیک کاربردی، دوره 6، شماره 1، 91-103.
توکلی عنبران، ح.، علویان، ه.، ایزدی، ر.، سمیع، ع.، 1391، بکارگیری پرتوهای گاما در کشف مینهای زمینی باقیمانده از جنگ تحمیلی در خاک ایران با استفاده از روش مونت کارلو، نوزدهمین کنفرانس هسته­ای ایران، دوره 19، 953-958.
جاویدی، ح.، رحیمی، ا.، علیزاده، م.، عباسی، ک.، 1395، محاسبه آهنگ دوز پرتوها در تراز اصلی نیروگاه اتمی بوشهر در زمان سوخت گذاری، در انتهای چیدمان اول سوخت، همایش ملی مهندسی قدرت و نیروگاه­های هسته ای، دوره 1.
خدابخش، ر.، علیزاده، ز.، محمدی، م.، 1394، بررسی اثرات ذرات بتا بر سلول‌های سرطانی رده K562، کنفرانس هسته ای ایران، دوره 22.
رحمانی زاده، ف.، شیرمردی، پ.، 1395، بررسی تغییر شار فوتونی گذرنده ناشی از چشمه های گاما از بتن های مختلف با استفاده از کد شبیه سازیMCNP، همایش ملی مهندسی قدرت و نیروگاه­های هسته ای، دوره 1.
سولفانیدیس، ن. ،1371، اندازه گیری و آشکارسازی تابش های هسته­ای، مشهد، انتشارات دانشگاه مشهد شماره 624.
غلامی، ف.، علی بیگی، ا.، شمسایی، م.، قاسمی، م.، 1394، ارزیابی حفاظ بیمارستان شریعتی به روش محاسباتی و مقایسه نتایج با کد MCNPX، کنفرانس هسته ای ایران، شماره 22.
کاسه ساز، ی.، حسن زاده، م.، 1394، آموزش کد MCNPX، مرکز آموزش و توسعه کدهای محاسباتی.
Abro, E., Johansen, G.A., and Opedal, H., 1999, A radiation transport model as a design tool for gamma Densitometers, Nuclear Instruments and Methods in Physics Research A 431, 347-355.
Allen, K. S., Hartford, S. K., Merkel, G. J., 2018, Feasibility Study of a Micro Modular Reactor for Military Ground Applications, Journal of Defense Management, vol. 8, issue 1.

Anderson, C., McKinne, G., Tutt, J., James, M., 2017, Delta-ray Production in MCNP 6.2.0, Physics Procedia, vol. 90, 229-236.

Barataud, F., Moyne, C., Stemmelen, D., 1999, Measurement of soil water diffusivity of an undisturbed forest soil using dual-energy gamma radiation technique, Soil Science j. 164(7):493-502.

Bertuzzi, P., Bruckler, L., Gabilly, Y., and More, 1987, Calibration, field-testing, and error analysis of a gamma-ray probe for in situ measurement of dry bulk density, Soil Science j. 144(6):425-436.
Blake, GM. and Fogelman, I., 1997, Technical principles of dual energy x-ray absorptiometry, Semin. Nucl. Med. 27,210-228.
Briesmeister, J. F., 2000, MCNPTM–A General Monte Carlo N–Particle Transport Code, Version 5.
Burruss, R. C. and Ryder, R. T., 2004, Composition of crude oil and natural gas produced from 14 wells in the Lower Silurian sandstone and Medina Group, northeastern Ohio and northwestern Pennsylvania, U.S. Department of Interior.
Cheng, Z., Paltseva, A., Li, I., and More, 2015, Trace Metal Contamination in New York City Garden Soils, Soil Science j. 180(4/5):167-174.
De Swart, J. G. and Groenevelt, P. H., 1971, Column scanning with 60 kev gamma radiation, Soil Science j. 112(6):419-424.
Evans, 1955, The Atomic Nucleus, McGraw-Hill Book Co., New York.
Guimarães, M. F., Filho, V. F., Nascimento, Ritchie, J., 2003, Application of cesium-137 in a study of soil erosion and deposition in southeastern Brazil, Soil Science j. 168(1):45-53.
Knoll, 1979, Radiation Detection and Measurement, John Wiley& Sons, New York.
Lixia, L., Amitava, R., Kirk, K., and More, 2013, Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments, Soil Science j. 178(5):215-221.
MacIntyre, A. and Leleand, J., 1970, Soil density measurement by transmitted gamma radiation, The University of Arizona.

Rasouli, A. and Tavakoli-Anbaran, H., 2017, Study of relation between the gamma flux buildup factors and source geometry by M-C simulation, Nuclear Science and Techniques, 28:136.

Rawls, W. J. and Brooks, R. H., 1975, Gamma probe dry bulk densities, Soil Science j. 120(1):68-70.
Reynaert, N., Palmans, H., Thierens, H., Jeraj, R., 2002, Parameter dependence of the MCNP electron transport in determining dose distributions, the international Journal of medical physics research and practice, vol. 29, issue 10.
Sadiq, M. and Lindsay W. L., 1988, the solubility product of soil maghemite, Soil Science j. 146(1):1-5.
Sanguini, S. C., Pereira, S. G., Magela, C. G., and More, 2006, Identification and characterization of magnetite in ceramic artifacts and archaeological black earth of amazon region, Soil Science j. 171(1):59-64.
Tanimoto, T., 1995, Crustal Structure of the Earth, American Geophysical Union.
Tavakoli-Anbaran, H., Ahmadi, O. L., 2020, Monte Carlo Investigation on Neutron Dosimetry Parameters of 252Cf Isotron Brachytherapy Source, Sains Malaysiana Journal, vol. 49, Issue 3.
Tavakoli-Anbaran, H., Miri-Hakimabad, H., and Izadi-Najafabadi, R., 2009, The Effect of Detector Dimensions on the NaI (Tl) Detector Response Function, Journal of Applied Sciences, Volume: 9, Issue: 11, 2168 – 2173.
Vasiliev, M.A. and Others, 2011, a New Natural Gamma Radiation Measurement System for Marine Sediment and Rock Analysis, J. Appl. Geophys. 75.
Vaz, C. M. P., de Mendonça, N. J., Macedo, Á., 1999, Soil particle size fractions determined by gamma-ray attenuation, Soil Science j. 164(6):403-410.
Wenk, H. R. and Bulakh, A. G., 2004, Minerals: their constitution and origin, Cambridge University Press, p. 359.
Yoriyaz, H., Stabin, M. G., Santos, A., 2000, Monte Carlo MCNP-4B–Based Absorbed Dose Distribution Estimates for Patient-Specific Dosimetry, The Journal of Nuclear Medicine, vol. 42, no. 4.
Zhang, X., Xie, X., Cheng, J., Ning, J., Yuan, Y., Pan, J., Yang, G., 2011, Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation, Radiation Protection Dosimetry, Volume 148, Issue 1, Pages 9–19.