ارزیابی و مقایسه مدلسازی فیزیک سنگ کاستر-توکسوز و شو-پاین در یکی از مخازن هیدروکربوری کربناته ایران

نوع مقاله: سایر مقالات

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی معدن، نفت و ژئوفیزیک دانشگاه صنعتی شاهرود

2 دانشیار ، دانشکده مهندسی معدن، نفت و ژئوفیزیک دانشگاه صنعتی شاهرود

3 استاد، دانشکده مهندسی معدن، پردیس دانشکدههای فنی، دانشگاه تهران

چکیده

تحلیل داده های پتروفیزیکی و لرزه‌ای در تمامی مراحل اکتشاف تا توسعه و تولید مخازن هیدروکربوری از جایگاه بسیار مهمی برخوردار می‌باشد، لذا بررسی ارتباط میان پارامتر های کشسانی با خصوصیات مخزن، حایز اهمیت بوده که این امر با استفاده از مدل‌‌های فیزیک سنگ صورت می‌‌پذیرد. اکثر مدل‌های فیزیک سنگ برای مخازن هیدروکربوری ماسه سنگ کاربرد دارند. از آنجا‌ئیکه این مدل‌ها تفاوتهای قابل توجهی با مدل‌های فیزیک سنگ برای مخازن کربناته دارند، لذا انتخاب صحیح مدل مناسب فیزیک سنگ ضرورت بسیار دارد. به این منظور، دو مدل فیزیک سنگیِ کاستر-توکسوز و شو-پاین که مربوط به مدل‌های میانباری هستند، در دو چاه هدف واقع در یکی از مخازن کربناته جنوب ایران مورد ارزیابی قرار گرفتند. مقایسه دو مدل مذکور و همچنین برآورد درصد نوع حفرات در مخزن مورد مطالعه و از طرفی بررسی حساسیت پارامتر‌های هر مدل از اهداف اصلی این تحقیق می باشد. مدل‌های مذکور با استفاده از دانش ارزیابی سازندهای زمین‌شناسی در مقیاس چاه و اطلاعات اشباع سیال و سنگ مخزن ساخته شده است و‌ به منظور تعیین پارامترهای این مدل‌ها از فرآیند وارون‌سازی استفاده گردید. به این ترتیب که سرعت های موج تراکمی و برشی حاصل از مدل‌سازی با اطلاعات سرعتی موج تراکمی و برشی اندازه گیری شده در چاهها، مقایسه شده‌اند. نتایج حاصل از بررسی حاکی از آن است که استفاده از مدل شو-پاین کارآیی بالاتری در تخمین پارامترهای کشسانی داشته است. همچنین با توجه اینکه مدل کاستر-توکسوز یک مدل پایه با فرکانس بالا بوده و برای مطالعات فراصوتی (اولتراسونیک) مورد استفاده قرار می‌گیرد، لذا نتایج مطالعه نشان داد که مدل شو-پاین، قادر است با اضافه کردن معادله گسمن، مدل کاستر-توکسوز را برای استفاده در فرکانس های پایین، نظیر داده های نگار چاه، بهبود ببخشد. همچنین به نظر می ‌رسد که بتوان با استفاده از فرایند وارون‌سازی در تعیین درصد نوع حفرات، کارائی مدل-های فیزیک سنگ مخازن کربناته را افزایش داد.

کلیدواژه‌ها


Artola, F.A.V., Sanz, C., Villalobos, J.H., Castaneda, R., Borderas, M., Ravelo, J., Camacho, R.V., Gonzales, B.V., Olarte, F., Alpires, L.G. and Garrido, A.D., 2013, August. Comparing some rock physics methods that link elastic properties to relevant characteristics of carbonate reservoir, In 13th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 26–29 August 2013 (1114-1119). Society of Exploration Geophysicists and Brazilian Geophysical Society.

Avseth, P., Mukerji, T., and Mavko, G., 2010, Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk: Cambridge university press.

Bashah, N. S. I., and Pierson, B. J., 2011, Quantification of pore structure in a miocene carbonate build-up of Central Luconia, sarawak and its relationship to sonic velocity, Paper presented at the International Petroleum Technology Conference.

Berryman, J. G., 1995, Mixture theories for rock properties. Rock physics and phase relations: A handbook of physical constants, 205-228.

Eberli, G. P., Baechle, G. T., Anselmetti, F. S., and Incze, M. L., 2003, Factors controlling elastic properties in carbonate sediments and rocks, The Leading Edge, 22(7), 654-660.

Gegenhuber, N., and Pupos, J., 2015, Rock physics template from laboratory data for carbonates, Journal of Applied Geophysics, 114, 12-18.

Grana, D., Verma, S., Pafeng, J., Lang, X., Sharma, H., Wu, W., and Alvarado, V. ,2017, A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming, International Journal of Greenhouse Gas Control, 63, 296-309.

Huang, Q., Dou, Q., Jiang, Y., Zhang, Q., and Sun, Y., 2017, An integrated approach to quantify geologic controls on carbonate pore types and permeability, Puguang gas field, China. Interpretation, 5(4), T545-T561.

Kuster, G. T., and Toksöz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations, Geophysics, 39(5), 587-606.

Lubis, L., and Harith, Z., 2014, Pore type classification on carbonate reservoir in offshore Sarawak using rock physics model and rock digital images,Paper presented at the IOP Conference Series: Earth and Environmental Science.

Lucia, F. J., 2007, Carbonate reservoir characterization: An integrated approach: Springer Science and Business Media.

Lumley, D. E., 2001, Time-lapse seismic reservoir monitoring, Geophysics, 66(1), 50-53.

Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock physics handbook: Tools for seismic analysis of porous media: Cambridge university press.

Reine, C., 2015, A rock-physics tutorial: Discovering a supermodel.

Saberi, M.R., 2017, A closer look flatrock physics models and their assisted interpretation in seismic exploration, Iranian Journal of Geophysics, 71-84.

Saenger, E. H., 2016, Digital carbonate rock physics. Solid Earth, 7(4), 1185.

Wang, Z., Schmitt, D. R., Zhou, Y., and Wang, F., 2017, Carbonate rock physics modelling at ultrasonic and seismic frequencies. Paper presented at the 4th International Workshop on Rock Physics, Trondheim, Norway.

Xu, S., and Payne, M. A. ,2009, Modeling elastic properties in carbonate rocks, The Leading Edge, 28(1), 66-74.

Xu, S., and White, R. E., 1995, A new velocity model for clay-sand mixtures, Geophysical prospecting, 43(1), 91-118.

Yusoff, M., Bazleigh, Y., Radzi, N.A., Khalil, A., Amdan, A., Hong, C.W., Zeb, J. and Ting, J., 2014, December. Rock Physics Modelling in Oil and Gas Field Development, A Methodology for Reservoir Characterisation below Shallow Gas, In International Petroleum Technology Conference. International Petroleum Technology Conference.

Zhao, L., Nasser, M., and Han, D. h., 2013, Quantitative geophysical pore‐type characterization and its geological implication in carbonate reservoirs, Geophysical Prospecting, 61(4), 827-841.