تفسیر داده های میدان پتانسیل با استفاده از فیلتر تابع سیگموئید سریع-مطالعه موردی: معدن شماره دو سنگ‌آهن گل گهر کرمان

نوع مقاله : سایر مقالات

نویسندگان

1 گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران

2 اداره پژوهش و فناوری، دانشگاه جامع علمی کاربردی، واحد استان همدان

چکیده

تعیین گوشه و مرز افقی ساختارهای زمین شناسی مانند دایک، گسل، گنبد نمکی و..، یکی از اهداف مهم و اساسی در تفسیر داده‌های گرانی و مغناطیسی محسوب می‌گردد. اگرچه در دهه‌های اخیر روش‌ها و الگوریتم‌های مختلفی بر اساس مشتقات افقی و قائم داده‌های میدان پتانسیل برای تعیین گوشه و مرز جانبی ساختارهای مدفون معرفی گردیده، اما غالبا این فیلترها برای تعیین مرز ساختارهای زیرسطحی با چگالی‌های مختلف و توده‌های عمیق و حتی ساختارهای باریک نامناسب بوده و از توان تفکیک‌پذیری (resolution) و کیفیت لازم نیز برخوردار نیستند. در این پژوهش یک فیلتر به منظور تعیین گوشه‌ و مرز توده های مدفون زمین‌شناسی، با استفاده از ترکیب تابع سیگموئید سریع بهبود یافته و مشتقات افقی و قائم گرادیان افقی کل با تفکیک‌پذیری و دقت مناسب معرفی گردیده است. به همین منظور، در ابتدا کارآیی و توانمندی فیلتر تابع سیگموئید سریع (به اختصار FSF) بر روی مدل‌های مصنوعی گرانی و مغناطیسی پیچیده حاصل از چشمه‌های مدفون منشوری و مدل مصنوعی مغناطیسی بیشاپ (Bishop) با نوفه و بدون نوفه بررسی گردیده و سپس توانمندی فیلتر در مقایسه با فیلترهای مرسوم و استاندارد مانند، گرادیان افقی کل (THDR)، زاویه تیلت (TDR)، زاویه تتا (TM) و زاویه تیلت گرادیان افقی کل (TAHD)، بر روی داده‌های گرانی و مغناطیسی میدانی معدن گل‌گلهر سیرجان واقع در استان کرمان مورد بررسی و آزمایش قرار گرفته است. برای هر دو مدل مصنوعی و واقعی، روش تعیین مرز افقی سیگموئید سریع، از کیفیت و تفکیک‌پذیری بهتری نسبت به سایر فیلترهای تعیین گوشه برخوردار بوده و قادر است به طور همزمان مرزهای بی‌هنجار‌ی‌‌ها‌ی گرانی و مغناطیسی با دامنه‌های کوچک و بزرگ را با جزئیات و دقت بیشتری تعیین نماید. از اینرو با اطمینان می‌توان از فیلتر FSF در تفسیر کیفی بی‌هنجاری های میدان پتانسیل و شناسایی موقعیت افقی ساختارهای زیرسطحی استفاده نمود.

کلیدواژه‌ها


  1. الوندی، ا.، توکتای، ه. د.، فام، ل. ث.، (1400)، تفسیر داده­های گرانی با استفاده از تابع لجستیک و گرادیان افقی کل، مطالعه موردی: تاقدیس چارک، پژوهش­های ژئوفیزیک کاربردی,7(4), pp. 401-412. doi: 10.22044/jrag.2022.11430.1325

     

    ابراهیم­زاده اردستانی، و.، (1389)، گرانی سنجی کاربردی (اکتشاف کانی- زمین شناسی مهندسی)، انتشارات دانشگاه تهران، تهران.

     

    انصاری، ع.، قاری، ح.، علمدار، ک.، مرادی، س.، (1390)، بررسی ارتباط بین میدان‌های پتانسیل ادامه فراسو شده با عمق قرارگیری توده‌های معدنی با بررسی موردی در معدن سنگ‌آهن گل‌گهر، مجله ژئوفیزیک ایران، 5(4)،pp. 12-1.

     

    علمدار، ک.، انصاری، ع. ح.، (1388)؛ تفسیر بی­هنجاری­های میدان پتانسیل با روش تصویرسازی پارامترهای توده (SPI)، مجله ژئوفیزیک ایران, 3(2)pp. 40-25.

     

    Fedi M. and Florio G., (2001): Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophys. Prospect., 49, 40-58.

     

    Hsu S.K., Coppense D. and Shyu C.T., (1996): High-resolution detection of geologic boundaries from potential field anomalies: an enhanced analytic signal technique, Geophy. ,61, 1947-1957.

     

    Zuo B., Hu X., Liang Y. and Han Q., (2014): Detection of gravity field source boundaries using deconvolution method. Geophys. J. Int., 199, 1527-1543.

    Hidalgo-Gato MC, Barbosa VC., (2017), The monogenic signal of potential-field data: A Python implementation. Geophysics 82(3): F9–F14

     

    Miller HG, Singh V., (1994), Potential field tilt a new concept for location of potential field sources, J Appl Geophys 32:213–217

     

    Alvandi. A., Toktay, H, D., Nasri, S., (2022a), Application of direct source parameter imaging (direct local wave number) technique to the 2D gravity anomalies for depth determination of some geological structures, for depth determination of some geological structures, Acta Geophysica, https://doi.org/10.1007/s11600-022-00750-6

     

    Alvandi, A., Toktay, H, D., Pham, L, T., (2022b), Capability of improved Logistics filter in determining lateral boundaries and edges of gravity and magnetic anomalies Tuzgolu Area Turkey, Journal of Mining Engineering, 17(56), pp. 57-72. doi: 10.22034/ijme.2022.538984.1889

     

    Pham, L.T., Oksum, E. & Do,T.D.(2019), Edge enhancement of potential field data using the logistic function and the total horizontal gradient., Acta Geod Geophys 54,143–155 https://doi.org/10.1007/s40328-019-00248-6

     

    Pham L.T., (2020), A comparative study on different filters for enhancing potential field source boundaries: synthetic examples and a case study from the Song Hong Trough (Vietnam). Arabian J. Geosci.,13, 723

     

    Oksum, E., Le, D., Vu, M., Hang, N., Pham, L., (2021), A novel approach based on the fast sigmoid function for interpretation of potential field data, Boll. Geofis. Teor. Appl.62,543–556.https://doi.org/10.4430/bgta0348.

    Prasad, K. N. D; Pham, L, T; Singh, A, P,( 2022), Structural mapping of potential field sources using BHG filter ,Geocartointernational,DOI: 10.1080/10106049.2022.2048903

     

    Cordell.L, Grauch.VJS, (1985), Mapping basement magn-  etization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze WJ (ed) The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysics, Tulsa, pp 181–197

     

    Ferreira FJF, Souza J, Bongiolo ABS, Castro LG (2013) Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 78(3): J33–J41

     

    Fairhead, J. D., S. E. Williams, and G. Flanagan, (2004), Testing magnetic local wavenumber depth estimation methods using a complex 3D test model:74th Annual International Meeting, SEG, Expanded Abstracts, 742–745, https://doi.org/10.1190/1.1851313.

     

    Rao DB, Prakash MJ, Ramesh Babu N., (1990), 3-D and 2 1/2-D modeling of gravity anomalies with variable density contrast, Geophys Prospect 38:411–422

     

    Roest WRJ, Verhoef Pilkington M, (1992), Magnetic interpretation using the 3-D analytic signal, Geophysics 57(1):116–125

     

    Salem, A., S. Williams, D. Fairhead, R. Smith, and D. Ravat, (2008), Interpretation of magnetic data using tilt-angle derivatives, Geophysics,73, no.1, L1–L10

    https://doi.org/10.1190/1.2799992

    Verduzco B, Fairhead JD, Green CM, MacKenzie C, (2004) New insights into magnetic derivatives for structural mapping, Lead Edge 23(2):116–119

     

    Wijns C, Perez C, Kowalczyk P, (2005) Theta map: edge detection in magnetic data. Geophysics 70:39–43

     

    Williams, S. E., J. D. Fairhead, and G. Flanagan, (2002), Realistic models of basement topography for depth to magnetic basement testing, 72nd Annual International Meeting, SEG, ExpandedAbstracts,814817

    https://doi.org/10.1190/1.1817384.

     

    Zhang X, Yu P, Tang R, Xiang Y, Zhao CJ, (2015), Edge enhancement of potential field data using an enhanced tilt angle. Explor Geophys 46(3):276–283

     

    Nasuti Y. and Nasuti A.; (2018), NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies, Geophys. J. Int., 214, 36-45.

     

    Eshraghi, S.A., Roshan Ravan, J. and Sabzehei, M., (1999), Geological map of Neyriz. Scale 1:100,000. Geological survey of Iran.

     

    1. R. J. Cooper, (2020), A modified enhanced horizontal derivative filter for potential field data, Exploration Geophysics, DOI: 10.1080/08123985.2020.1725386

     

    Chen, T.; Zhang, G. NHF, (2022), an Edge Detector of Potential Field Data and Its Application in the Yili Basin. Minerals,12, 149. https://doi.org/10.3390/min12020149

     

    Behnam S, Ramazi H, (2019), Interpretation of geomagnetic data using power spectrum and 3D modeling of Gol-e-Gohar magnetic derivatives, J Appl Geophys 171:13. https:// doi. org/ 10. 1016/j. jappgeo. 2019. 103829

     

    Mahmoudi, S, Mahmoudi, A, Mehrabi, B (2017), Microstructure- re and geochemical evidences for genesis of the Gol-e-Gohar iron deposit, Iran J Econ Geol 9(2):463–481 (in Persian)