الگوی میدان تنش در پایانه جنوبی سامانه گسلی نهبندان با استفاده از وارون‌سازی ساز و کار کانونی زمین‌لرزه‌ها: گستره ریگان

نوع مقاله : سایر مقالات

نویسنده

استادیار؛ دانشکده علوم زمین، دانشگاه تحصیلات تکمیلی علوم پایه زنجان، زنجان

چکیده

انحراف محلی میدان تنش منطقه‌ای می‌تواند بر سازوکار زمین‌لرزه‌ها در مقیاس محلی تأثیر گذار باشد. در بخش مرکزی، خاوری و ‏جنوب خاوری ایران راستای بیشینه تنش افقی (‏σ1‎‏) منطقه‌ای ‏NE-SW‏ است. در حاشیه‌ی جنوبی بلوک لوت، محدوده ریگان، ‏دو زمین‌لرزه با بزرگای 5/6 و 2/6 به ترتیب در آذر و بهمن ماه سال 1389 در راستای دو گسله‌ی کور رخ داده‌اند. زمین‌لرزه اول ‏با سازوکار راستالغز راست‌بر در طول گسله‌ی با راستای ‏NE-SW‏ خاور چاه‌قنبر و زمین‌لرزه دوم با سازوکار راستالغز چپ‌بر در ‏طول گسله‌ی با راستای ‏NW-SE‏ جنوب چاه‌قنبر اتفاق افتاده‌اند. برخلاف زمین‌لرزه اول، سازوکار زمین‌لرزه دوم با سازوکار قابل ‏انتظار در رژیم تنش منطقه‌ای گستره خاور و جنوب خاور ایران قابل توجیه نیست. برای بررسی این تفاوت، وضعیت تنش محلی ‏در گستره ریگان و پیرامون بلوک لوت با وارون سازی سازوکار کانونی 74 زمین لرزه (1397-1312) با بزرگای 8/4‏Mw≥ ‎‏ به-‏دست آمد. نتایج نشان‌داد راستای محور بیشینه تنش افقی در طول پهنه گسله نهبندان از شمال به جنوب 33 درجه در جهت ‏عقربه‌های ساعت چرخیده و در محدوده ریگان به ‏‎°E‎‏077‏‎ N‏ می‌رسد. این تغییرات با الگوی قابل انتظار برای انحراف محلی تنش ‏در بخش‌های کششی پایانه‌ گسله‌های راستالغز همخوان است. در‌صورتی که در پهنه تراستی شهداد در باختر ریگان، راستای ‏محور بیشینه تنش افقی ‏‎°E‎‏026-013‏‎ Nاست. بنابراین، منطقه ریگان از نظر ساختاری بخشی از پایانه جنوبی سامانه گسلی ‏نهبندان درنظر گرفته می‌شود. بنابراین مطالعه، از میان عوامل موثر در تغییر تنش محلی و درنتیجه سازوکار زمین‌لرزه‌ها در ‏گستره ریگان، بیشترین نقش را می‌توان به فعالیت پهنه گسله پی‌سنگی نهبندان اختصاص داد. ‏

کلیدواژه‌ها


رضا، م.، عباسی ، م.ر.، جوان دولویی، غ.، سدیدخوی، ا.، 1393. شناسایی گسل مسبب زمین‌لرزه 29 آذر 1389 محمدآباد ریگان (کرمان) و سازوکار کانونی آن براساس تحلیل پسلرزه ها. مجله ژئوفیزیک ایران، جلد 8، شمارزه 1، صفحه 59-70.
Aflaki, M., Mousavi, Z., Ghods, A., Shabanian, E., Vajedian, S. and Akbarzadeh, M., 2019. The 2017 M w 6 Sefid Sang earthquake and its implication for the geodynamics of NE Iran. Geophysical Journal International, 218(2), pp.1227-1245. https://doi.org/10.1093/gji/ggz172
Aghanabati, A., 1992. Geological Quadrangle Map of Jahanabad, scale 1: 250,000, Geological Survey of Iran, K12.
Aghanabati, A., 1994. Geological quadrangle map of Khash, scale 1: 250,000, Geological Survey of Iran, L12.
Amiri, M., Mousavi, Z., Atzori, S., Khorrami, F., Aflaki, M., Tolomei, C., Motaghi, K. and Salvi, S., 2020. Studying postseismic deformation of the 2010–2011 Rigan earthquake sequence in SW Iran using geodetic data. Tectonophysics, p.228630. https://doi.org/10.1016/j.tecto.2020.228630
Angelier, J., Slunga, R., Bergerat, F., Stefansson, R. and Homberg, C., 2004. Perturbation of stress and oceanic rift extension across transform faults shown by earthquake focal mechanisms in Iceland. Earth and Planetary Science Letters, 219(3-4), pp.271-284. https://doi.org/10.1016/S0012-821X(03)00704-0
Antonioli, A., Cocco, M., Das, S. and Henry, C., 2002. Dynamic stress triggering during the great 25 March 1998 Antarctic Plate earthquake. Bulletin of the Seismological Society of America, 92(3), pp.896-903. https://doi.org/10.1785/0120010164
Babakhani, A. R., and Alavi Tehrani, N., 1992. Geological quadrangle map of Sabzevaran, scale 1:250,000, Geological Survey of Iran, J12.
Baniadam, F., Shabanian, E. and Bellier, O., 2020. The kinematics of the Dasht-e Bayaz earthquake fault during Pliocene-Quaternary: implications for the geodynamics of eastern Central Iran. Tectonophysics. https://doi.org/10.1016/j.tecto.2019.228218
Barton, C.A. and Zoback, M.D., 1994. Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near‐complete stress drop and a new technique for stress magnitude measurement. Journal of Geophysical Research: Solid Earth, 99(B5), pp.9373-9390. https://doi.org/10.1029/93JB03359
Berberian, M., 1976. Documented earthquake faults in Iran. Geol. Surv. Iran, 39, pp.143-186.
Berberian, M., 1979. Earthquake faulting and bedding thrust associated with the Tabas-e-Golshan (Iran) earthquake of September 16, 1978. Bulletin of the Seismological Society of America, 69(6), pp.1861-1887.
Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5), pp.605-614. https://doi.org/10.1144/gsjgs.139.5.0605
Berberian, M., Jackson, J.A., Ghorashi, M. and Kadjar, M.H., 1984. Field and teleseismic observations of the 1981 Golbaf–Sirch earthquakes in SE Iran. Geophysical Journal International, 77(3), pp.809-838. https://doi.org/10.1111/j.1365-246X.1984.tb02223.x
Berberian, M. and Yeats, R.S., 1999. Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological society of America, 89(1), pp.120-139.
Berberian, M., Jackson, J.A., Qorashi, M., Khatib, M.M., Priestley, K., Talebian, M. and Ghafuri-Ashtiani, M., 1999. The 1997 May 10 Zirkuh (Qa'enat) earthquake (M w 7.2): faulting along the Sistan suture zone of eastern Iran. Geophysical Journal International, 136(3), pp.671-694. https://doi.org/10.1046/j.1365-246x.1999.00762.x
Berberian, M., Jackson, J.A., Qorashi, M., Talebian, M., Khatib, M. and Priestley, K., 2000. The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding‐plane slip on a growing anticline, and active tectonics of the Sistan suture zone. Geophysical Journal International, 142(2), pp.283-299. https://doi.org/10.1046/j.1365-246x.2000.00158.x
Berberian, M., Jackson, J.A., Fielding, E., Parsons, B.E., Priestley, K., Qorashi, M., Talebian, M., Walker, R., Wright, T.J. and Baker, C., 2001. The 1998 March 14 Fandoqa earthquake (Mw 6.6) in Kerman province, southeast Iran: re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Geophysical Journal International, 146(2), pp.371-398. https://doi.org/10.1046/j.1365-246x.2001.01459.x
Bertoluzza, L. and Perotti, C.R., 1997. A finite-element model of the stress field in strike-slip basins: implications for the Permian tectonics of the Southern Alps (Italy). Tectonophysics, 280(1-2), pp.185-197. https://doi.org/10.1016/S0040-1951(97)00140-6
Bürgmann, R. and Pollard, D.D., 1994. Strain accommodation about strike-slip fault discontinuities in granitic rock under brittle-to-ductile conditions. Journal of Structural Geology, 16(12), pp.1655-1674.
Carey, E., 1979. Recherche des directions principales de contraintes associées au jeu d'une population de failles. RevGéogrPhysGéol Dyn, 21(1).
Carey, E., and Brunier, B., 1974. Analyse theorique et rumerique d'un modelemecaniqueelementaire applique a l'etude d'une population de failles. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, SerieD: Sciences Naturelles, 279(11), pp.891-894.
Carey-Gailhardis, E. and Mercier, J.L., 1987. A numerical method for determining the state of stress using focal mechanisms of earthquake populations: application to Tibetan teleseisms and microseismicity of Southern Peru. Earth and Planetary Science Letters, 82(1-2), pp.165-179. https://doi.org/10.1016/0012-821X(87)90117-8
Chester, F.M. and Chester, J.S., 2000. Stress and deformation along wavy frictional faults. Journal of Geophysical Research: Solid Earth, 105(B10), pp.23421-23430. https://doi.org/10.1029/2000JB900241
Cowgill, E., Yin, A., Arrowsmith, J.R., Feng, W.X. and Shuanhong, Z., 2004. The AkatoTagh bend along the AltynTagh fault, northwest Tibet 1: Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults. GSA Bulletin, 116(11-12), pp.1423-1442. https://doi.org/10.1130/B25359.1
Delaloye, M. and Desmons, J., 1980. Ophiolites and mélange terranes in Iran: a geochronological study and its paleotectonic implications. Tectonophysics, 68(1-2), pp.83-111. https://doi.org/10.1016/0040-1951(80)90009-8
Desmons, J. and Beccaluva, L., 1983. Mid-ocean ridge and island-arc affinities in ophiolites from Iran: palaeographic implications: complementary reference. Chemical Geology, 39(1-2), pp.39-63.  https://doi.org/10.1016/0009-2541(83)90071-2
Du, Y. and Aydin, A., 1995. Shear fracture patterns and connectivity at geometric complexities along strike‐slip faults. Journal of Geophysical Research: Solid Earth, 100(B9), pp.18093-18102.  https://doi.org/10.1029/95JB01574
Duan, B. and Oglesby, D.D., 2005. Multicycle dynamics of nonplanar strike‐slip faults. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2004JB003298
Enescu, B., Aoi, S., Toda, S., Suzuki, W., Obara, K., Shiomi, K. and Takeda, T., 2012. Stress perturbations and seismic response associated with the 2011 M9. 0 Tohoku‐oki earthquake in and around the Tokai seismic gap, central Japan. Geophysical research letters, 39(13).  https://doi.org/10.1029/2012GL051839
Engdahl, E.R., van der Hilst, R. and Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), pp.722-743.
Fialko, Y., Rivera, L. and Kanamori, H., 2005. Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas Fault. Geophysical Journal International, 160(2), pp.527-532. https://doi.org/10.1111/j.1365-246X.2004.02511.x
Feng, C., Yang, Y., Ma, X., Qi, B., Zhang, P., Meng, J., Tan, C. and Chen, Q., 2020. Local stress perturbations associated with the 2008 Wenchuan M 8.0 earthquake near the Longmenshan fault zone in the eastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, p.104429. https://doi.org/10.1016/j.jseaes.2020.104429
Fujita, E., Kozono, T., Ueda, H., Kohno, Y., Yoshioka, S., Toda, N., Kikuchi, A. and Ida, Y., 2013. Stress field change around the Mount Fuji volcano magma system caused by the Tohoku megathrust earthquake, Japan. Bulletin of volcanology, 75(1), p.679. https://doi.org/10.1007/s00445-012-0679-9
Gao, K., Harrison, J.P., Lei, Q. and Latham, J.P., 2017. Investigating the relationship between far-field stress and local values of the stress tensor. Procedia engineering, 191, pp.536-542. https://doi.org/10.1016/j.proeng.2017.05.215
Griffith, W.A., Becker, J., Cione, K., Miller, T. and Pan, E., 2014. 3D topographic stress perturbations and implications for ground control in underground coal mines. International Journal of Rock Mechanics and Mining Sciences, 70, pp.59-68. https://doi.org/10.1016/j.ijrmms.2014.03.013
Hardebeck, J.L. and Okada, T., 2018. Temporal stress changes caused by earthquakes: a review. Journal of Geophysical Research: Solid Earth, 123(2), pp.1350-1365.   https://doi.org/10.1002/2017JB014617
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K. and Wenzel, F., 2007. Plate boundary forces are not enough: Second‐and third‐order stress patterns highlighted in the World Stress Map database. Tectonics, 26(6). https://doi.org/10.1029/2007TC002133
Heidbach, O., Iaffaldano, G. and Bunge, H.P., 2008. Topography growth drives stress rotations in the central Andes: observations and models. Geophysical Research Letters, 35(8). https://doi.org/10.1029/2007GL032782
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. and Müller, B., 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1-4), pp.3-15. https://doi.org/10.1016/j.tecto.2009.07.023
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F. and Ziegler, M.O., 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, pp.484-498. https://doi.org/10.1016/j.tecto.2018.07.007
Hessami, K., Jamali, F. and Tabassi, H., 2003. Major active faults of Iran. IIEES, Tehran.
Homberg, C., Hu, J.C., Angelier, J., Bergerat, F. and Lacombe, O., 1997. Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura Mountains). Journal of structural geology, 19(5), pp.703-718.
Homberg, C., Angelier, J., Bergerat, F. and Lacombe, O., 2004. Using stress deflections to identify slip events in fault systems. Earth and Planetary Science Letters, 217(3-4), pp.409-424. https://doi.org/10.1016/S0012-821X(03)00586-7
Horton, S.P., Kim, W.Y. and Withers, M., 2005. The 6 June 2003 Bardwell, Kentucky, earthquake sequence: Evidence for a locally perturbed stress field in the Mississippi embayment. Bulletin of the Seismological Society of America, 95(2), pp.431-445. https://doi.org/10.1785/0120040052
Jackson, J., Bouchon, M., Fielding, E., Funning, G., Ghorashi, M., Hatzfeld, D., Nazari, H., Parsons, B., Priestley, K., Talebian, M. and Tatar, M., 2006. Seismotectonic, rupture process, and earthquake-hazard aspects of the 2003 December 26 Bam, Iran, earthquake. Geophysical Journal International, 166(3), pp.1270-1292. https://doi.org/10.1111/j.1365-246X.2006.03056.x
Javidfakhr, B., Bellier, O., Shabanian, E., Ahmadian, S. and Saidi, A., 2011. Plio–Quaternary tectonic regime changes in the transition zone between Alborz and Kopeh Dagh mountain ranges (NE Iran). Tectonophysics, 506(1-4), pp.86-108. https://doi.org/10.1016/j.tecto.2011.04.013
Jentzer, M., Fournier, M., Agard, P., Omrani, J., Khatib, M.M. and Whitechurch, H., 2017. Neogene to Present paleostress field in Eastern Iran (Sistan belt) and implications for regional geodynamics. Tectonics, 36(2), pp.321-339. https://doi.org/10.1002/2016TC004275
Kattenhorn, S.A., Aydin, A. and Pollard, D.D., 2000. Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields. Journal of structural Geology, 22(1), pp.1-23.  https://doi.org/10.1016/S0191-8141(99)00130-3
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S.A., Walpersdorf, A., Hosseini, S., Tavakoli, P. and Aghamohammadi, A., 2019. An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophysical Journal International, 217(2), pp.832-843.  https://doi.org/10.1093/gji/ggz045
Lee, J., Hong, T.K. and Chang, C., 2017. Crustal stress field perturbations in the continental margin around the Korean Peninsula and Japanese islands. Tectonophysics, 718, pp.140-149. https://doi.org/10.1016/j.tecto.2017.08.003
Lei, Q. and Gao, K., 2018, August. Effects of far-field stress state on local stress perturbation in heterogeneous fractured rocks. In 52nd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
Luo, G. and Liu, M., 2010. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake. Tectonophysics, 491(1-4), pp.127-140. https://doi.org/10.1016/j.tecto.2009.12.019
Mazabraud, Y., Béthoux, N. and Delouis, B., 2013. Is earthquake activity along the French Atlantic margin favoured by local rheological contrasts?. ComptesRendus Geoscience, 345(9-10), pp.373-382. https://doi.org/10.1016/j.crte.2013.07.004
Moghadam, H.S., Li, Q.L., Griffin, W.L., Stern, R.J., Chiaradia, M., Karsli, O., Ghorbani, G., O'Reilly, S.Y. and Pourmohsen, M., 2020. Zircon U-Pb, geochemical and isotopic constraints on the age and origin of A-and I-type granites and gabbro-diorites from NW Iran. Lithos, 374, p.105688. https://doi.org/10.1016/j.lithos.2020.105688
Mount, V.S. and Suppe, J., 1992. Present‐day stress orientations adjacent to active strike‐slip faults: California and Sumatra. Journal of Geophysical Research: Solid Earth, 97(B8), pp.11995-12013. https://doi.org/10.1029/92JB00130
Mousavi, Z., Walpersdorf, A., Walker, R.T., Tavakoli, F., Pathier, E., Nankali, H.R.E.A., Nilfouroushan, F. and Djamour, Y., 2013. Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region. Earth and Planetary Science Letters, 377, pp.287-298. https://doi.org/10.1016/j.epsl.2013.07.007
Navabpour, P., Angelier, J. and Barrier, E., 2007. Cenozoic post-collisional brittle tectonic history and stress reorientation in the High Zagros Belt (Iran, Fars Province). Tectonophysics, 432(1-4), pp.101-131. https://doi.org/10.1016/j.tecto.2006.12.007
Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., Nankali, H., Hatzfeld, D., Bayer, R., Tavakoli, F. and Ashtiani, A., 2003. GPS network monitors the Arabia-Eurasia collision deformation in Iran. Journal of Geodesy, 77(7-8), pp.411-422. https://doi.org/10.1007/s00190-003-0326-5
Nogole-Sadat, M.A.A. and Almasian, M., 1993. Tectonic Map of Iran, Scale 11000000. Geological Survey of Iran
Okubo, C.H. and Schultz, R.A., 2006. Near-tip stress rotation and the development of deformation band stepover geometries in mode II. Geological Society of America Bulletin, 118(3-4), pp.343-348. https://doi.org/10.1130/B25820.1
Qiu, Q. and Chan, C.H., 2019. Coulomb stress perturbation after great earthquakes in the Sumatran subduction zone: Potential impacts in the surrounding region. Journal of Asian Earth Sciences, 180, p.103869. https://doi.org/10.1016/j.jseaes.2019.103869
Rajabi, M., Tingay, M., Heidbach, O., Hillis, R. and Reynolds, S., 2017. The present-day stress field of Australia. Earth-Science Reviews, 168, pp.165-189. https://doi.org/10.1016/j.earscirev.2017.04.003
Rashidi, A., Abbasi, M.R., Nilfouroushan, F., Shafiei, S., Derakhshani, R. and Nemati, M., 2020. Morphotectonic and earthquake data analysis of interactional faults in Sabzevaran Area, SE Iran. Journal of Structural Geology, p.104147. https://doi.org/10.1016/j.jsg.2020.104147
Regard, V., Bellier, O., Thomas, J.C., Abbassi, M.R., Mercier, J., Shabanian, E., Feghhi, K.H. and Soleymani, S., 2004. Accommodation of Arabia‐Eurasia convergence in the Zagros‐Makran transfer zone, SE Iran: A transition between collision and subduction through a young deforming system. Tectonics, 23(4). https://doi.org/10.1029/2003TC001599
Sahandi, M. R., 1996. Geological quadrangle map of Iranshahr, Scale 1:250000, Geological Survey of Iran, L13.
Savage, W.Z. and Morin, R.H., 2002. Topographic stress perturbations in southern Davis Mountains, west Texas 1. Polarity reversal of principal stresses. Journal of Geophysical Research: Solid Earth, 107(B12), pp.ETG-5. https://doi.org/10.1029/2001JB000484
Shabanian, E., Siame, L., Bellier, O., Benedetti, L. and Abbassi, M.R., 2009. Quaternary slip rates along the northeastern boundary of the Arabia-Eurasia collision zone (Kopeh Dagh Mountains, Northeast Iran). Geophysical Journal International, 178(2), pp.1055-1077. https://doi.org/10.1111/j.1365-246X.2009.04183.x
 
Shabanian, E., Bellier, O., Abbassi, M.R., Siame, L. and Farbod, Y., 2010. Plio-quaternary stress states in NE Iran: Kopeh Dagh and Allah Dagh-Binalud mountain ranges. Tectonophysics, 480(1-4), pp.280-304. https://doi.org/10.1016/j.tecto.2009.10.022
Spada, G., Sabadini, R., Yuen, D.A. and Ricard, Y., 1992. Effects on post-glacial rebound from the hard rheology in the transition zone. Geophysical Journal International, 109(3), pp.683-700. https://doi.org/10.1111/j.1365-246X.1992.tb00125.x
Talebian, M., Fielding, E.J., Funning, G.J., Ghorashi, M., Jackson, J., Nazari, H., Parsons, B., Priestley, K., Rosen, P.A., Walker, R. and Wright, T.J., 2004. The 2003 Bam (Iran) earthquake: Rupture of a blind strike‐slip fault. Geophysical Research Letters, 31(11). https://doi.org/10.1029/2004GL020058
Talebian, M., Biggs, J., Bolourchi, M., Copley, A., Ghassemi, A., Ghorashi, M., Hollingsworth, J., Jackson, J., Nissen, E., Oveisi, B. and Parsons, B., 2006. The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: reactivation of an intramountain reverse fault. Geophysical Journal International, 164(1), pp.137-148. https://doi.org/10.1111/j.1365-246X.2005.02839.x
Tchalenko, J.S. and Ambraseys, N.N., 1970. Structural analysis of the Dasht-e Bayaz (Iran) earthquake fractures. Geological Society of America Bulletin, 81(1), pp.41-60. https://doi.org/10.1130/0016-7606(1970)81[41:SAOTDB]2.0.CO;2
Tirrul, R., Bell, I.R., Griffis, R.J. and Camp, V.E., 1983. The Sistan suture zone of eastern Iran. Geological Society of America Bulletin, 94(1), pp.134-150. https://doi.org/10.1130/0016-7606(1983)94<134:TSSZOE>2.0.CO;2
Vahdati Daneshmand, F., 1990. Geological quadrangle map of Jaz Murian, Scale 1:250000, Geological Survey of Iran, K13.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R. and Tavakoli, F., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1), pp.381-398. https://doi.org/10.1111/j.1365-246X.2004.02222.x
Walker, R. and Jackson, J., 2004. Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 23(5). https://doi.org/10.1029/2003TC001529
Walker, R., Jackson, J. and Baker, C., 2003. Surface expression of thrust faulting in eastern Iran: source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences. Geophysical Journal International, 152(3), pp.749-765. https://doi.org/10.1046/j.1365-246X.2003.01886.x
Walker, R., Jackson, J. and Baker, C., 2004. Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran. Geophysical Journal International, 157(1), pp.265-282. https://doi.org/10.1111/j.1365-2966.2004.02179.x
Walker, R.T., Bergman, E.A., Szeliga, W. and Fielding, E.J., 2011. Insights into the 1968-1997 Dasht-e-Bayaz and Zirkuh earthquake sequences, eastern Iran, from calibrated relocations, InSAR and high-resolution satellite imagery. Geophysical Journal International, 187(3), pp.1577-1603. https://doi.org/10.1111/j.1365-246X.2011.05213.x
Walker, R.T., Bergman, E.A., Elliott, J.R., Fielding, E.J., Ghods, A.R., Ghoraishi, M., Jackson, J., Nazari, H., Nemati, M., Oveisi, B. and Talebian, M., 2013. The 2010–2011 South Rigan (Baluchestan) earthquake sequence and its implications for distributed deformation and earthquake hazard in southeast Iran. Geophysical Journal International, 193(1), pp.349-374. https://doi.org/10.1093/gji/ggs109
Walpersdorf, A., Hatzfeld, D., Nankali, H., Tavakoli, F., Nilforoushan, F., Tatar, M., Vernant, P., Chéry, J. and Masson, F., 2006. Difference in the GPS deformation pattern of North and Central Zagros (Iran). Geophysical Journal International, 167(3), pp.1077-1088. https://doi.org/10.1111/j.1365-246X.2006.03147.x
Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., Hatzfeld, D., Aghamohammadi, A., Bigot, A., Djamour, Y. and Nankali, H., 2014. Present‐day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data. Journal of Geophysical Research: Solid Earth, 119(2), pp.1359-1383. https://doi.org/10.1002/2013JB010620
Weston, J., Engdahl, E.R., Harris, J., Di Giacomo, D. and Storchak, D.A., 2018. ISC-EHB: reconstruction of a robust earthquake data set. Geophysical Journal International, 214(1), pp.474-484. https://doi.org/10.1093/gji/ggy155
Yin, Z.M. and Rogers, G.C., 1995. Rotation of the principal stress directions due to earthquake faulting and its seismological implications. Bulletin of the Seismological Society of America, 85(5), pp.1513-1517.
Zang, A. and Stephansson, O., 2009. Stress field of the Earth's crust. Springer Science & Business Media.
Zarifi, Z., Nilfouroushan, F. and Raeesi, M., 2014. Crustal stress map of Iran: insight from seismic and geodetic computations. Pure and Applied Geophysics, 171(7), pp.1219-1236. https://doi.org/10.1007/s00024-013-0711-9
Zoback, M.L. and Richardson, R.M., 1996. Stress perturbation associated with the Amazonas and other ancient continental rifts. Journal of Geophysical Research: Solid Earth, 101(B3), pp.5459-5475. https://doi.org/10.1029/95JB03256