مدل‌سازی وارون داده‌های لرزه‌ای انکساری کم عمق با استفاده از ترکیب آنسامبلی خطی شبکه‌های عصبی مصنوعی منفرد

نوع مقاله : سایر مقالات

نویسندگان

1 گروه مهندسی معدن، دانشکده محیط زیست،دانشگاه صنعتی ارومیه

2 گروه مهندسی فناوری اطلاعات و مهندسی کامپیوتر، دانشگده فناوری های صنعتی، دانشگاه صنعتی ارومیه، ارومیه، ایران

3 دانش آموخته کارشناسی ارشد ژئوفیزیک(گرایش زلزله شناسی)، دانشکده علوم، دانشگاه ارومیه

10.22044/jrag.2021.9925.1294

چکیده

بمنظور تفسیر روش‌های لرزه‌ای، پس از جمع آوری داده‌ها و پیش پردازش‌های لازم، وارون‌سازی آنها جهت تخمین پارامترهای مدل، گام اساسی در استفاده از این داده‌ها است. مدل‌سازی وارون این داده‌ها همانند سایر داده‌های ژئوفیزیکی با چالش عدم یکتایی در تخمین پارامترهای مدل روبه‌رو است. در مطالعه حاضر به‌منظور تلاش برای حل این مشکل و ارائه یک روش خودکار در وارون‌سازی داده های لرزه‌ای، یک روش وارون‌سازی جدید مبتنی بر شبکه‌های عصبی آنسامبلی معرفی شده است. در روش پیشنهاد شده ابتدا با مدل‌سازی پیشرو مدل‌های مختلف چند لایه با ضخامت‌ها و سرعت‌های موج طولی مختلف به شبکه‌های عصبی آموزش داده شد. در این مطالعه از شبکه‌های MLP با ساختارهای مختلف استفاده شده است. در ادامه با ارزیایی متقابل، شبکه‌های عصبی آموزش داده شده مورد ارزیابی قرار گرفتند و شبکه‌های با بهترین عملکرد (خطای کم) جهت استفاده در ترکیب آنسامبلی شبکه‌های عصبی انتخاب شدند. شبکه‌ عصبی آنسامبلی استفاده شده، از ترکیب خطی شبکه‌های منفرد (سه شبکه منفرد برتر) به دست آمد. جهت ارزیابی بهتر کارایی ترکیب شبکه‌های عصبی استفاده شده ، 20% از داده های اولیه کنار گذاشته شد (بدون حضور در فرآیند آموزش) و از این داده ها به‌عنوان داده‌های آزمون استفاده شد. در پایان روش وارون‌سازی معرفی شده با داده‌های واقعی لرزه انکساری مورد ارزیابی بیشتر قرار گرفت که مدل وارون حاصل از داده‌های واقعی، تطابق بسیار خوبی با مطالعات زمین شناسی و نتایج لرزه‌ای قبلی انجام شده در ایستگاه مورد نظر دارد. همچنین به جهت مقایسه عملکرد و اهمیت روش پیشنهاد شده در این مطالعه، نتایج به دست آمده از داده های واقعی با روش وارون‌سازی توموگراقی نیز مقایسه شد. نتایج حاصل از این مطالعه بیانگر آن است که، وارون‌سازی داده‌های لرزه‌ای مبتنی بر شبکه‌های عصبی یک روش سریع، آسان و بدون نیاز به فرض مدل اولیه برای داده‌های مشاهده شده است.

کلیدواژه‌ها