مدلسازی پروفیل سرعت موج برشی با وارون‌سازی داده‌های HVSR با استفاده از الگوریتم CJAYA

نوع مقاله : سایر مقالات

نویسنده

دانشیار؛ دانشکده‌ صنایع و فناوری‌های معدنی، گروه مهندسی معدن، دانشگاه صنعتی ارومیه

چکیده

شناخت ساختار سرعت موج برشی (Vs) در مطالعات مهندسی مرتبط با حوزه علوم زمین بسیار حائز اهمیت است. بطوریکه در مطالعات مربوط به اثر ساختگاه، Vs و فرکانس طبیعی کلیدی ترین متغیرها می‌باشند. جهت مدلسازی سرعت موج برشی تکنیک‌های مختلفی وجود دارد. اما استفاده از روش‌های ژئوفیزیکی در شناخت این متغیرها به دلیل عدم تخریب محیط زیست و سرعت و دقت مناسب همواره مورد نظر مهندسان بوده است. در چند سال اخیر استفاده از امواج مایکروترمور بسیار مورد استفاده قرار گرفته است. روش برداشت مایکروترمور تک ایستگاهی به دلیل سهولت و سرعت بالا در برداشت داده، از جمله روش‌هایی است که در دهه گذشته در مدلسازی Vs بسیار مورد توجه قرار گرفته است. در این روش بعد از جمع آوری امواج مایکروترمور (با لرزه‌نگار سه مولفه‌ای) نسبت طیفی مولفه افقی به قائم (Horizontal to vertical spectral ratio) در فرکانس-های مختلف محاسبه شده و نمودار مربوطه که نمودار HVSR نامیده می‌شود به دست می‌آید. با وارون‌سازی این نمودار می‌توان ساختارVs را تخمین زد. اما وارون‌سازی مناسب داده‌های HVSR در دستیابی به یک مدل قابل اعتماد از Vs بسیار حائز اهمیت است. در این مطالعه یک روش وارون‌سازی جدید و مناسب برمبنای الگوریتم فراکاوشی CJAYA پیشنهاد شده است که با ایجاد تغییراتی در الگوریتم اصلی JAYA برای وارون‌سازی داده‌های HVSR کاربردی و قابل استفاده است. سرعت همگرایی بالا و عدم نیاز به تنظیم پارامترهای داخلی از ویژگی‌های این الگوریتم می‌باشند. روش پیشنهادی در این مطالعه علاوه بر داده‌های ساختگی (در حالت وجود نوفه و بدون آن)، با استفاده از داده‌های واقعی نیز مورد آزمون قرار گرفت. نتایج بیانگر کارایی، دقت و سرعت بالای روش پیشنهاد شده می‌باشد. بطوریکه کارایی روش پیشنهاد شده در در تخمین پارامترهای مدل (Vs و ضخامت لایه‌ها) در حضور نوفه و بدون آن در مقایسه با الگوریتم اصلی JAYA از برتری برخوردار بود و همچنین همگرایی به پاسخ نهایی در تعداد تکرارهای کمتر به‌دست آمد.

کلیدواژه‌ها


نورمحمدی، م.، پورمیرزائی، ر.، نیکروز، ر.، 1398، مطالعه اثرساختگاه با  استفاده از روش نسبت طیفی H/V و صحت سنجی آن:مطالعه موردی، ششمین کنگره ملی مهندسی عمران، تهران، ایران.
 
مکرم، م.، و نیکنام، ط.،1395، استفاده از الگوریتم JAYA به منظور حل مسأله توزیع اقتصادی بار،کنفرانس بین المللی مهندسی برق،تهران.
حکیمی، ب.، معصومی، ز.، قدس، ع.، سعید، ن.، (1397). مطالعه اثر ساختگاه مبتنی بر HVSR مایکروترمور در شهر زنجان(ایران)، مجله ژئوفیزیک ایران،12(4) ، 115-139.
Alizadeh, S., Poormirzaee, R., Nikrouz, R., Sarmady, S. (2021).Using Stacked Generalization Ensemble Method to Estimate Shear Wave Velocity Based on Downhole Seismic Data: a case study of Sarab-e-Zahab, Iran, journal of seismic exploration, J. Seism. Explor. 30, 281–301.
Angardi, S., Poursorkhabi, R.V., Shirvanehdeh, A.Z. et al. (2024). Vs Profiling by the Inversion of Rayleigh Wave Ellipticity Curve Using a Hybrid Artificial Intelligence Method. Pure Appl. Geophys. 181, 1831–1844. https://doi.org/10.1007/s00024-024-03514-z
Arai, H., and Tokimatsu, K., (2004). S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum, Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 53–63.
Bardet, JP., Ichii, K., Lin, CH., (2000). EERA: A Computer Program for Equivalent-linear Earthquake Site Response Analyses of Layered Soil Deposits. University of Southern California, Department of Civil Engineering.
Bonnefoy-Claudet S., Cornou C., Bard P.-Y., Cotton F., Moczo P., Kristek J. et al. 2006. H/V ratios: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International 167(2), 827–837.
Bonnefoy-Claudet, S., K¨ohler, A., Cornou, C., Wathelet, M. & Bard, P.-Y., 2008. Effects of Love waves on microtremor H/V ratio, Bull. seism. Soc. Am., 98, 288–300.
Borcherdt, R. D. (1994). Estimates of site-dependent response spectra for design (methodology and justification). Earthquake spectra, 10(4), 617-653.
Chen, Q., Liu, L., Wang, W., & Rohrbach, E. Site effects on earthquake ground motion based on microtremor measurements for metropolitan Beijing. Chinese Science Bulletin, 54(2), 280-287, 2009.
Cipta, A., Cummins, P., Dettmer, J., Saygin, E., Irsyam, M., Rudyanto, A. & Murjaya, J., (2018) Seismic velocity structure of the Jakarta Basin, Indonesia, using trans-dimensional Bayesian inversion of horizontal-to-vertical spectral ratios, Geophys. J. Int., 215(1), 431–449.
Darwin, Charls, 1985, The origin of Species by Means of Natural Selection, Penguin: Harmondsworth
Hallo, M., Imperatori, W., Panzera, F., and F¨ah, D., (2021) Joint multizonal transdimensional Bayesian inversion of surface wave dispersion and ellipticity curves for local near-surface imaging, Geophys. J. Int.  226, 627–659.
Hobiger, M., Bard, P.-Y., Cornou, C. & Le Bihan, N., (2009) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec), Geophys. Res. Lett., 36, L14303,
Hobiger, M., Cornou, C., Wathelet, M., Di Giulio, G., Knapmeyer-Endrun, b., Renalier, F., bard, P.-Y.,  Savvaidis, A., Hailemikael, S.,  Le Bihan, N., Ohrnberger, M. and Theodoulidis, N., (2013). Ground structure imaging by inversions of Rayleigh wave ellipticity: Sensitivity analysis and application to European strong-motion sites, Geophys. J. Int. 192, 207–229.
Houssein, E.H., Gad, A.G., and Wazery, Y.M., (2021). Jaya Algorithm and Applications: A Comprehensive Review, Razmjooy, N., et al. (eds.), Metaheuristics and Optimization in Computer and Electrical Engineering, Lecture Notes in Electrical Engineering 696.
Hunter, J. A., Benjumea, B., Harris, J. B., Miller, R. D., Pullan, S. E., Burns, R. A., & Good, R. L. (2002). Surface and downhole shear wave seismic methods for thick soil site investigations. Soil Dynamics and Earthquake Engineering, 22(9-12), 931-941.
Kafadar, Ö., İmamoğlu, Ç. (2022). Estimation of the amplification properties of soil through HVSR inversion based on an elitist genetic algorithm. Earth Sci Inform 15, 2319–2334 (2022).
Kudo, K., Kanno, T., Okada, H., zel ,O., Erdik, M., Takahashi, M., Sasatani, T., Higashi, S., Yoshida, K., (2000). Site specific issues on strong ground motion during the Kocaeli, Turkey Earthquake of August 17, 1999, as inferred from array observations of microtremors and aftershocks. Bulletin of the Seismological Society of America, Submitted to BSSA Special Issue.
Layadi, K., Semmane, F. and Yelles-Chaouche, A., (2018) S-wave velocity structure of Chlef City, Algeria, by inversion of Rayleigh wave ellipticity, Near Surface Geophysics, 16, 328-339.
Layadi, K., Semmane, F. and Yelles-Chaouche, A., (2018) S-wave velocity structure of Chlef City, Algeria, by inversion of Rayleigh wave ellipticity, Near Surface Geophysics, 16, 328-339.
Long, W., Zijun, Zh., Chao, H., Leung, T.K. (2018). A gpu-accelerated parallel jaya algorithm for efficiently estimating li-ion battery model parameters. Appl Soft Comput 65:12–20.
Maghami, s., Sohrabi-Bidar, A., Bignardi, S.,  Zarean, A., Kamalian, M., (2021) Extracting the shear wave velocity structure of deep alluviums of “Qom” Basin (Iran) employing HVSR inversion of microtremor recordings, Journal of Applied Geophysics 185, 104246.
Maheswari, R. U., Boominathan, A., & Dodagoudar, G. R. (2010). Seismic site classification and site period mapping of Chennai City using geophysical and geotechnical data. Journal of Applied Geophysics, 72(3), 152-168.
Moon, S.W., Subramaniam, P., Zhang, Y., Vinoth, G., Ku, T., (2019). Bedrock depth evaluation using microtremor measurement: empirical guidelines at weathered granite formationin Singapore. J. Appl. Geophys. 171, 103866. https://doi.org/10.1016/j. jappgeo.2019.103866.
Nakamura, Y., (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Railw. Tech. Res. Inst. Q Rep., 30(1), 25–33.
Özalaybey, S., Zor, E., Ergintav, S., Tapırdamaz, M.C., (2011).Investigation of 3-D basin structures in the İzmit Bay area (Turkey) by single-station microtremor and gravimetric methods, Geophysical Journal International, Volume 186, Issue 2, Pages 883–894.
Poormirzaee, R., (2016) S-wave velocity profiling from refraction microtremor Rayleigh wave dispersion curves via PSO inversion algorithm, Arab J Geosci 9:1-10, DOI 10.1007/s12517-016-2701-6.
Poormirzaee, R., Kabgani, A. (2022). Characterizing the Vs Profile from Surface Wave Data Using a Customized Artificial Jellyfish Search Algorithm. Pure Appl. Geophys.179,4429–4444.
Qadri, S. T., Nawaz, B., Sajjad, S. H., & Sheikh, R. A. Ambient noise H/V spectral ratio in site effects estimation in Fateh jang area, Pakistan. Earthquake Science, 28(1), 87-95, 2015.
Rao, R. (2016), Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, International Journal of Industrial Engineering Computations, 7(1), 19-34.
Sanchez-Sesma F.J. (2017). Modeling and inversion of the microtremor H/V spectral ratio: physical basis behind the diffuse field approach. Earth Planets Space 69(1), 92.
SESAME_European_project, Pierre-Yves BARD, (2004) Site effects assessment using ambient excitations; deliverable D23.12: guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation; deliverable D23.12. Final report WP12. Project No. EVG1-CT-2000-00026.
Vinh, L.T., Son, N.N., (2020). Parameters extraction of solar cells using modified jaya algorithm. Optik 203:164034.
Zitar, R.A., Al-Betar, M.A., Awadallah, M.A. et al. (2022). An Intensive and Comprehensive Overview of JAYA Algorithm, its Versions and Applications. Arch Computat Methods Eng 29, 763–792. https://doi.org/10.1007/s11831-021-09585-8.