ارزیابی مؤلفه‌های امواج سطحی جهت شناسایی حفره‌های زیرسطحی با استفاده از مدل‌سازی‌های دو و سه‌بعدی به روش اجزا محدود

نوع مقاله : سایر مقالات

نویسندگان

1 استادیار، گروه عمران، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران

2 استادیار، گروه عمران و محیط‌زیست، دانشگاه صنعتی شیراز، شیراز، ایران

3 استادیار، شبکه شتابنگاری کشور، مرکز تحقیقات راه، مسکن و شهرسازی، وزارت راه و شهرسازی، تهران، ایران

چکیده

شناسایی ناهنجاری‌های زیرسطحی همچون حفره، فروچاله و تونل به خاطر احتمال بروز نشست‌ها و فروریزش‌های احتمالی همواره موردتوجه مهندسان ژئوتکنیک و ژئوفیزیک بوده است. بهره‌گیری از روش‌های جدیدی همچون روش‌های امواج سطحی می‌تواند در جهت شناسایی این ناهنجاری‌ها گام مناسبی تلقی شود. نظر به اینکه اغلب مطالعات و تحلیل‌های انجام‌شده با در نظر گرفتن مولفه قایم امواج رایلی صورت پذیرفته است و با توجه به اینکه ناهنجاری‌های زیرسطحی تأثیرات متفاوتی بر روی مؤلفه‌های مختلف امواج سطحی دارند؛ لذا در این مقاله به ارزیابی مولفه‌های قایم و شعاعی امواج رایلی و مولفه امواج لاو به منظور شناسایی حفره توخالی و توپر در محیط‌های خاکی نیم فضای همگن و لایه‌بندی شده پرداخته شده است. در این خصوص، با اعمال بار لرزه‌ای در جهت افقی و قایم به ترتیب مؤلفه امواج لاو و مؤلفه‌های قایم و شعاعی امواج رایلی ایجاد و برداشت شده است. انتشار امواج رایلی و لاو با استفاده از تحلیل چندایستگاهی امواج سطحی و همچنین شبیه‌سازی‌ها با بهره‌گیری از روش اجزا محدود در نرم‌افزار آباکوس انجام پذیرفته است. تاثیر حفرات زیرسطحی بر مولفه‌‌های امواج سطحی با ارزیابی تغییرات بیضوی شکل ذرات امواج رایلی، نسبت مولفه‌ها و همچنین دامنه‌های حداکثر نرمال شده در گیرنده‌ها انجام پذیرفته است. نتایج مدل‌سازی‌های دوبعدی نشان دادند که شکل بیضوی حرکت ذرات امواج رایلی در اثر وجود ناهنجاری زیرسطحی دچار به‌هم‌ریختگی و تغییرشکل می‌شوند و این تأثیر به نحو قابل‌ملاحظه‌ای در دامنه‌های حداکثر نرمال شده و نسبت مؤلفه‌های شعاعی و قایم امواج رایلی مشاهده شده است. در ادامه نتایج مدل‌سازی‌های سه‌بعدی نشان دادند که امواج لاو نیز همانند امواج رایلی با دقت و وضوح مناسبی می‌توانند در شناسایی حفره‌های زیرسطحی مورد استفاده قرار گیرد. در مجموع می‌توان این‌گونه بیان نمود که شناسایی حفره‌های زیرسطحی با ارزیابی شکل بیضوی حرکت ذرات، دامنه‌های حداکثر نرمال شده و نسبت مؤلفه‌های امواج رایلی و لاو امکان‌پذیر می‌باشد.

کلیدواژه‌ها


Abbasi Karafshani, S., Ardakani, and A. Yakhchalian, M., 2016, Comparison between the Effects of Near- and Far-Fault Ground Motions on the Seismic Response of a Soil-Pile-Structure System, Journal of Structural and Construction Engineering, 2 (4), pp. 117-130.
Aminnedjad, B., & Butt, S. D., 2003, Imaging Abandoned Underground Mines and Assessing Geotechnical Hazards Research Project, Phase 1 Final Report–Assessment of State of the Art for Nondestructive Geophysical Imaging Technology, unpublished report.
Atkinson, J. Hf., 2000, Non-linear soil stiffness in routine design, Gèotechnique, 50 (5), 487–508.
Castaings, M., Bacon, C., Hosten, B. and Predoi, M. V., 2004, Finite element predictions for the dynamic response of thermo-viscoelastic material structures, The Journal of the Acoustical Society of America, 115 (3), 1125-1133.
Chai, H. Y., Goh, S. H., Phoon, K. K., Wei, C. F. and Zhang, D. J., 2014, Effects of source and cavity depths on wave fields in layered media, Journal of Applied Geophysics, 107, 163-170.
Chai, H. Y., Phoon, K. K., Goh, S. H. and Wei, C. F., 2012, Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities, Journal of Applied Geophysics, 83, 107-119.
 Coduto, D. P., 2015, Foundation design: principles and practices, Pearson. (Second edition), Prentice Hall, Inc.
Davoodi, M., Pourdeilami, A., Jahankhah, H. and Jafari, M. K., 2018, Application of perfectly matched layer to soil-foundation interaction analysis, Journal of Rock Mechanics and Geotechnical Engineering, 10 (4), 753-768.
Dravinski, M. and Michael, C. Y., 2011, Peak surface motion due to scattering of plane harmonic P, SV, or Rayleigh waves by a rough cavity embedded in an elastic half-space, Journal of seismology, 15 (1): 131-145.
Drozdz, M. B., 2008, Efficient finite element modelling of ultrasound waves in elastic media (Doctoral dissertation, Imperial College London), Imperial College London.
Engelsfeld, T., Šumanovac, F. and Pavin, N., 2008, Investigation of underground cavities in a two-layer model using the refraction seismic method, Near Surface Geophysics, 6 (4): 221-231.
Hajian, A., Zomorrodian, H. and Styles, P., 2012, Simultaneous estimation of shape factor and depth of subsurface cavities from residual gravity anomalies using feed-forward back-propagation neural networks, Acta Geophysica, 60 (4): 1043-1075.
Hesse, D. and Cawley, P., 2006, Surface wave modes in rails, The Journal of the Acoustical Society of America, 120 (2), 733-740.
Imposa, S., Grassi, S., Di Raimondo, S., Patti, G., Lombardo, G. and Panzera, F., 2018, Seismic refraction tomography surveys as a method for voids detection: an application to the archaeological park of Cava Ispica, Sicily, Italy, International Journal of Architectural Heritage, 12 (5): 806-815.
Ivanov, J., Miller, R. D., Park, C. B., & Ryden, N. 2003, Seismic search for underground anomalies, In: SEG Technical Program Expanded Abstracts 2003, 1223-1226, Society of Exploration Geophysicists.
Liang, J. and Liu, Z., 2009, Diffraction of plane SV waves by a cavity in poroelastic half-space, Earthquake engineering and engineering vibration, 8 (1): 29-46.
Lin, S., & Ashlock, J. C., 2014, Multimode Rayleigh wave profiling by hybrid surface and borehole methods. Geophysical Journal International, 197 (2), 1184-1195.
Lin, S., & Ashlock, J. C., 2016, Surface-wave testing of soil sites using multichannel simulation with one-receiver, Soil Dynamics and Earthquake Engineering, 87, 82-92.
Luo, W., & Rose, J. L., 2007, Phased array focusing with guided waves in a viscoelastic coated hollow cylinder, The Journal of the Acoustical Society of America, 121 (4), 1945-1955.
McKenna, J.R., Rim, H., and Li, Y., 2016, Feasibility and Limitations of Void Detection Using Gravity Gradiometry, IEEE Transactions on Geoscience and Remote Sensing, 54: 881-891.
Meijer, W.Y., 2014, Numerical modeling for seismic exploration with karstic subsurface structures, Master of Science Thesis, 2014, Delft University of Technology, ETH Zurich, RWTH Aachen University.
Miller, R. D., Ivanov, J., Xia, J., Peterie, S. L., & Sloan, S. L., 2010, Seismic investigations of subsidence hazards. In SEG Technical Program Expanded Abstracts, 3769-3773, Society of Exploration Geophysicists.
Mirassi, S. and Rahnema, H., 2019, Effect of frequency content of seismic source load on Rayleigh and P waves in soil media with cavity, Journal of Structural and Construction Engineering, (Articles in Press): doi:10.22065/jsce.2019.176403.1808
Nasseri-Moghaddam, A., Cascante, G., & Hutchinson, J., 2005, A new quantitative procedure to determine the location and embedment depth of a void using surface waves, Journal of Environmental & Engineering Geophysics, 10 (1), 51-64.
Nasseri-Moghaddam, A., Cascante, G., Phillips, C., & Hutchinson, D. J., 2007, Effects of underground cavities on Rayleigh waves—Field and numerical experiments, Soil dynamics and earthquake engineering, 27 (4), 300-313.
Park, C. B., Miller, R. D., & Xia, J., 1999, Multichannel analysis of surface waves, Geophysics, 64 (3), 800-808.
Rahnema, H., & Mirasi, S., 2012, Seismic and geotechnical study of land subsidence and vulnerability of rural buildings, International Journal of Geosciences, 3 (04), 878.
Rahnema, H., & Mirassi, S., 2016, Study of land subsidence around the city of Shiraz, Scientia Iranica. Transaction A, Civil Engineering, 23 (3), 882.
Rajagopal, P., Drozdz, M., Skelton, E. A., Lowe, M. J., & Craster, R. V., 2012, On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available finite element packages. NDT & E International, 51, 30-40.
Schmelzbach, C., Jordi, C., Sollberger, D., Doetsch, J., Kaufmann, M., Meijer, W.Y., Manukyan, E., Robertsson, J., Maurer, H., Greenhalgh, S. and Horstmeyer, H., 2015, Understanding the impact of karst on seismic wave propagation-a multi-method geophysical study, in 77th EAGE Conference and Exhibition-Workshops.
Shao, G. Z., Tsoflias, G. P., And Li, C. J., 2016, Detection of near-surface cavities by generalized S-transform of Rayleigh waves, Journal of Applied Geophysics, 129, 53-65.
Shi, P., 2015, Surface wave propagation effects on buried segmented pipelines, Journal of Rock Mechanics and Geotechnical Engineering, 7 (4), 440-451.
Shirzad Shahrivar, M. and Gholi Zadeh, A., 2017, Numerical investigation of soil and buried structures using finite element analysis, Journal of Structural and Construction Engineering, 3 (4): 97-104. doi:10.22065/jsce.2016.41241.
Sloan, S. D., Nolan, J. J., Broadfoot, S. W., McKenna, J. R. and Metheny, O. M., 2013, Using near-surface seismic refraction tomography and multichannel analysis of surface waves to detect shallow tunnels: A feasibility study, Journal of Applied Geophysics, 99: 60–65, doi:10.1016/j.jappgeo.2013.10.004.
Sloan, S. D., Peterie, S. L., Miller, R. D., Ivanov, J., Schwenk, J. T., & McKenna, J. R., 2015, Detecting clandestine tunnels using near-surface seismic techniques, Geophysics, 80 (5), EN127-EN135.
Xia, J., Nyquist, J. E., Xu, Y., Roth, M. J., & Miller, R. D., 2007, Feasibility of detecting near-surface feature with Rayleigh-wave diffraction, Journal of Applied Geophysics, 62 (3), 244-253.
Zhu, J., Currens, J.C. and Dinger, J. S., 2011, Challenges of using electrical resistivity method to locate karst conduits-A field case in the Inner Bluegrass Region, Kentucky, Journal of Applied Geophysics, 75: 523-530.