Calculation of stable vertical derivatives using the combination of finite difference and upward continuation, case study: gravity field data of the northern area of the Jalalabad iron ore mine, Kerman province

Authors

Institute of Geophysics, University of Tehran, Tehran, Iran

Abstract

The vertical derivatives of the gravity field are an important tool for the 
interpretation of potential field data. The first and second orders of the vertical 
derivatives of the gravity field, or various edge detection filters developed by 
combining different orders of the vertical derivatives with other functions, are 
used to process and interpret gravity field anomalies. However, the main 
drawback of these filters is their sensitivity to noise. In this study, by 
combining two finite difference methods and an upward continuation filter, a 
new and effective method for calculating the vertical derivative of the gravity 
field is introduced, which has greater stability to noise and is used to calculate 
the vertical derivatives. To this end, the ability of this method and other conventional methods to calculate the vertical 
derivative of the gravity field was investigated using synthetic gravity field data contaminated with 3 and 6% Gaussian 
noise. After theoretical confirmation, the methods for calculating vertical derivative along with edge determination 
filters such as horizontal tilt angle (TDX) and vertical derivative of Heaviside function (HSV) filter were also tested and 
investigated on the gravity field data of Jalalabad Zarand iron ore mine in Kerman province, Iran. The results of the 
synthetic gravity models with noise and the real data from the northern area of the Jalal Abad iron ore mine show that 
this technique is able to reduce the noise effect in the vertical gradient maps and better draw the edges of the buried 
sources.

ابراهیم‌زاده اردستانی، و.، 1389، گرانی‌سنجی کاربردی، انتشارات دانشگاه تهران.
 
ژولیده­سر, ف، مرادزاده, ع. و دولتی­ارده­جانی, ف.، 1399، وارون‌سازی تُنُک سه‌بعدی توام گرادیان متقاطع با استفاده از قید همواری برای داده‌های گرانی و مغناطیس کانسار آهن هماتیتی جلال‌آباد،  نشریه مهندسی معدن، 15(49)، 67-87.
 
یوسفی­طبس, ع. و آقاجانی, ح.، 1397، کاربرد روش گرادیان کل نرمال بهبودیافته در تعیین موقعیت بی‌هنجاری‌های میدان پتانسی، نشریه مهندسی منابع معدنی، 3(3)، 17-29.
 
ژولیده­سر، ف. و مصطفایی، ک.، 1392، خدمات ژئوفیزیک مغناطیس­سنجی و گرانی­سنجی در آنومالی­های سنگ آهن ایران مرکزی، پروژه اکتشاف گرانی­سنجی در محدوده شمالی معدن سنگ­آهن جلال­آباد زرند، گزارش فنی گرانی­سنجی، مشارکت شرکت معدن­کاو و زمین موج­گستر.
 
Alvandi A., Toktay H D. and Pham L T.; 2022a: Capability of improved Logistics filter in determining lateral boundaries and edges of gravity and magnetic anomalies Tuzgolu, Area Turkey. Iranian Journal of Mining Engineering., 7(4), https://doi.org/10.22034/ijme.2022.538984.1889. (in Persian).
 
Alvandi A., Toktay H D. and Pham L T.; 2022b: Interpretation of gravity data using logistic function and total horizontal gradient (LTHG) - A case study: Charak anticline. JOURNAL OF RESEARCH ON APPLIED GEOPHYSICS (JRAG)., 17(56), https://doi.org/10.22044/jrag.2022.11430.1325. (in Persian).
 
Ai, H., Alvandi, A., Ghanati, R., Pham, L., Alarifi, S., Nasui, D. and Eldosouky, A., 2023, Modified non-local means: A novel denoising approach to process gravity field data. Open Geosciences, 15(1), https://doi.org/10.1515/geo-2022-0551.
 
Alvandi, A., Su, K., Ai, H., Ardestani, V.E., and Lyu, C., 2023, Enhancement of Potential Field Source Boundaries Using the Hyperbolic Domain (Gudermannian Function). Minerals13, 1312. https://doi.org/10.3390/min13101312.
 
Alvandi, A., and Ardestani, V.E., 2023, Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bull. Geophys. Oceanogr, 64, 279–300. https://doi.org/10.4430/bgo00420.
 
Alvandi, A., Ghanati, R., 2023, Using magnetic data for estimating the location of lateral boundaries and the depth of the shallow salt dome of Aji-Chai, East Azerbaijan Province, Iran. International Journal of Mining and Geo-Engineering, 57(3), pp. 251-258. https://doi.org/10.22059/ijmge.2023.352685.595014.
 
Baniamerian, J., Liu, S., and Abbas, M. A., 2018, Stable computation of the vertical gradient of potential field data based on incorporating the smoothing filters. Pure and Applied Geophysics, 175(8), 2785–2806.
 
Blakely, R. J., 1996, Potential theory in gravity and magnetic applications. Cambridge: Cambridge University Press.
 
Cooper, G. R. J., and Cowan, D. R., 2006, Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32(10), 1585–1591.
 
Florio, G., Fedi, M., and Pasteka, R., 2006, On the application of Euler deconvolution to the analytic signal. Geophysics, 71(6), L87–L93.
 
Gang, Y, Lin, Z., 2018, An improved stable downward continuation of potential fields using a truncated Taylor series and regularized vertical derivatives method, Journal of Geophysics and Engineering, 15(5), 2001–2008.
 
Oliveira, S.P. and Pham, L.T., 2022, A stable finite difference method based on upward continuation to evaluate vertical derivatives of potential field data. Pure Appl Geophys 179(12):4555–4566.
 
Rao DB, Prakash MJ, Ramesh Babu N (1990) 3-D and 2 1/2-D modeling of gravity anomalies with variable density contrast. Geophys Prospect 38:411–422.
 
Tatchum, C. N., Tabod, C. T., Koumetio, F., and Manguelle Dicoum, E., 2011, A gravity model study for differentiating vertical and dipping geological contacts with application to a Bouguer gravity anomaly over the Foumban shear zone, Cameroon. Geophysica, 47(1–2), 43–55.
 
Toktay, H.D., 2022, Modeling of Archaeomagnetic Anomaly Maps, Springer, Singapore, https://doi.org/10.1007/978-981-19-4219-8.
 
Tran, K. V., and Nguyen, T. N., 2020, A novel method for computing the vertical gradients of the potential field: application to downward continuation. Geophysical Journal International, 220(2), 1316–1329.
 
Pham, L. T., 2021, A high resolution edge detector for interpreting potential field data: A case study from the Witwatersrand basin, South Africa. Journal of African Earth Science, 178(104), 190.