Summary This study evaluates the Tilt Derivative (TDR) and Theta Angle (Cos θ) filters for delineating geophysical anomaly boundaries and suppressing artifacts in potential-field data. Synthetic and real gravity/magnetic datasets were first corrected for magnetic inclination via Reduction-to-the-Pole (RTP), which, while improving anomaly focus, induced spurious artifacts. To address this, magnetic data were transformed into pseudo-gravity fields, neutralizing orientation-dependent effects and spectral distortions. Both TDR and Cos θ filters were then applied: TDR enhances edge detection by computing the ratio of vertical to horizontal gradients, while Cos θ identifies boundary zones through the cosine of the angle between total and horizontal gradients. On pseudo-gravity data, TDR and Cos θ yielded clearer structural boundaries and improved detection of shallow anomalies, particularly Anomaly 2 in the GolGohar, without RTP-induced artifacts. Directional dependency persisted in RTP-processed magnetic data for TDR, whereas Cos θ proved more orientation-invariant. In real gravity and pseudo-gravity datasets, both filters delineated boundaries independently of source trend, though TDR slightly exaggerated body widths. Random noise tests confirmed the numerical stability of each method. Integrating RTP, pseudo-gravity conversion, TDR, and Cos θ within a unified workflow substantially enhances boundary interpretation accuracy and robustness for mineral exploration in complex terrains.
Telford, W. M., et al. (1990). Applied geophysics, Cambridge university press.
Ibraheem, I. M., et al. (2019). "Edge detectors as structural imaging tools using aeromagnetic data: a case study of Sohag Area, Egypt." 9(5): 211.
Miller, H.G. and V.J.J.o.a.G. Singh, Potential field tilt—a new concept for location of potential field sources. 1994. 32(2-3): p. 213-217.
Verduzco, B., et al., New insights into magnetic derivatives for structural mapping. 2004. 23(2): p. 116-119.
Cooper, G., D.J.C. Cowan, and Geosciences, enhancing potential field data using filters based on the local phase. 2006. 32(10): p. 1585-1591.
Salem, A. and D.J.G. Ravat, A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data. 2003. 68(6): p. 1952-1961.
Beiki, M.J.G., Analytic signals of gravity gradient tensor and their application to estimate source location. 2010. 75(6): p. I59-I74.
Fairhead, J. D., & Williams, S. E. (2006). Evaluating normalized magnetic derivatives for structural mapping. In SEG Technical Program Expanded Abstracts 2006 (pp. 845-849). Society of Exploration Geophysicists.
Kianoush P, Khah NKF, Hosseini SA, Jamshidi E, Afzal P, Ebrahimabadi AJH. Geobody estimation by Bhattacharyya method utilizing nonlinear inverse modeling of magnetic data in Baba-Ali iron deposit, NW Iran. 2023;9(11).
Bizhani H, Mansour Shoar P, Moghadasi MJIJoM, Geo-Engineering. 2D inversion of magnetic and gravity data: a case study on Golgohar mine. 2023;57(1):41-6.
Milano M, Varfinezhad R, Bizhani H, Moghadasi M, Kalateh AN, Baghzendani HJJoAG. Joint interpretation of magnetic and gravity data at the Golgohar mine in Iran. 2021;195:104476.
Ansari A, Ghari H, Alamdar K, Moradi SJIJoG. Investigation of the relationship between upward continued potential fields and depth of the causative bodies: a case study from Gol-Gohar Iron ore mine. 2016;5(4):1-12.
Alamdar K, Ansari AJIJoG. Interpretation of potential field anomalies using source parameter imaging method (SPI). 2016;3(2):25-40.
Alvandi A, Deniz Toktay H, Nasri SJAG. Application of direct source parameter imaging (direct local wave number) technique to the 2D gravity anomalies for depth determination of some geological structures. 2022;70(2):659-67.
Alamdar K, Ansari A, Ghorbani AJGR. Edge detection of magnetic body using horizontal gradient of pseudo gravity anomaly. 2009;11.
Wijns, C., et al. (2005). "Theta map: Edge detection in magnetic data." 70(4): L39-L43.
Ibraheem, I. M., et al. (2023). "A new edge enhancement filter for the interpretation of magnetic field data." 180(6): 2223-2240.
Lv, W., et al. (2024). "A Novel Method of Magnetic Sources Edge Detection Based on Gradient Tensor." 14(7): 657.
An‐Guo, C., et al. (2017). "APPLICATION OF AN ENHANCED THETA‐BASED FILTER FOR POTENTIAL FIELD EDGE DETECTION: A CASE STUDY OF THE LUZONG ORE DISTRICT." 60(2): 203-218.
Núñez-Demarco, P., et al. (2023). "Potential-field filters for gravity and magnetic interpretation: a review." 44(3): 603-664.
ARISOY, M. Ö., & DİKMEN, Ü. (2013). Edge detection of magnetic sources using enhanced total horizontal derivative of the tilt Angle Geliştirilmiş Eğim Açısı Toplam Yatay Türevi ile Manyetik Kaynakların Sınırlarının Belirlenmesi. Bull Earth Sci Appl Res Centre Hacettepe Univ, 34(1), 73-82.
Dentith, M. and S. T. Mudge (2014). Geophysics for the mineral exploration geoscientist, Cambridge University Press.
Behnam, S. and H. J. J. o. A. G. Ramazi (2019). "Interpretation of geomagnetic data using power spectrum and 3D modeling of Gol-e-Gohar magnetic anomaly." 171: 103829.
Ahmady, A. E. , Ansari, A. H. and Mojtahedzadeh, S. H. (2025). Enhancing Boundary Estimation of Potential-Field Data Using Tilt and Theta Angle Derivatives. , 11(2), 131-148. doi: 10.22044/jrag.2025.16073.1369
MLA
Ahmady, A. E. , , Ansari, A. H. , and Mojtahedzadeh, S. H. . "Enhancing Boundary Estimation of Potential-Field Data Using Tilt and Theta Angle Derivatives", , 11, 2, 2025, 131-148. doi: 10.22044/jrag.2025.16073.1369
HARVARD
Ahmady, A. E., Ansari, A. H., Mojtahedzadeh, S. H. (2025). 'Enhancing Boundary Estimation of Potential-Field Data Using Tilt and Theta Angle Derivatives', , 11(2), pp. 131-148. doi: 10.22044/jrag.2025.16073.1369
CHICAGO
A. E. Ahmady , A. H. Ansari and S. H. Mojtahedzadeh, "Enhancing Boundary Estimation of Potential-Field Data Using Tilt and Theta Angle Derivatives," , 11 2 (2025): 131-148, doi: 10.22044/jrag.2025.16073.1369
VANCOUVER
Ahmady, A. E., Ansari, A. H., Mojtahedzadeh, S. H. Enhancing Boundary Estimation of Potential-Field Data Using Tilt and Theta Angle Derivatives. , 2025; 11(2): 131-148. doi: 10.22044/jrag.2025.16073.1369