Non-linear inversion modeling of gravity data using grey wolf algorithm for estimating the depth of a sedimentary basin

Authors

Abstract

Inverse modeling is a classical tool in applied geophysics that is divided into two forms: linear (for unknown density) and nonlinear (for unknown geometry). In this paper, the gray wolf optimization (GWO) algorithm is employed for the nonlinear inverse modeling of two-dimensional gravity data to assess and estimate the depth of a sedimentary basin. GWO is an artificial intelligence algorithm inspired by the hunting and group behavior of wolves. This algorithm is used to enhance the methods of basement characteristics determination in sedimentary basins inversion modeling. In this method, first, a two-dimensional gravity field data is obtained using data collection techniques and specialized equipment. Then, by employing the GWO algorithm, various parameters of the basement in sedimentary basin model, including depth, shape, and other characteristics, are estimated. The GWO algorithm is used to optimize the inversion modeling process and to obtain the best-fit parameters for the basement model based on the collected gravity data. In this modeling process, a basement is typically represented by a series of adjacent corner blocks arranged together, and then, their thickness is calculated. In order to demonstrate the effectiveness of this method, an inverse modeling of synthetic gravity data with and without noise was performed. As a result, the calculated depth and gravity of the synthetic model showed little deviation from the assumed values due to the defined search range for model parameters and consistently fell within the specified range. Furthermore, the proposed method was employed for inversion modeling of a portion of gravity data from Moghan basin in the northwest of Iran, and consequently, the obtained results were consistent with other relevant studies and the geological understanding of the region. The maximum depth obtained for this sedimentary basin was 2800 meters.

Keywords


  1. اسحق زاده ع.، حاجیان ع.، خلیلی ش.،1396، مدل سازی وارون دو بعدی میدان گرانی باقی مانده با استفاده از شبکه عصبی پیشخور مدولار : مطالعه موردی یک معدن کرومیت، نشریه پژوهشهای ژئوفیزیک کاربردی،43-60

    جولائی ا.، عرب امیری ع.ر ، نجاتی کلاته ع و قمی ش.، ١٣٩٨، تخمین عمق سنگ بستر حوضه های رسوبی با وارونسازی داد ههای گرانی به وسیله الگوریتم رقابت ذرات، مطالعه موردی حوضه رسوبی مغان در شمال غرب ایران، مجله پژوهش نفت، ١١٢، ٧٤-٨٩ .

    نجاتی کلاته ع.، ابراهیم زاده اردستانی و. شاهین ا.، متولی عنبران، س. ه.، قمی ش. و جوان ا.، ١٣٨٨، مدل سازی وارون دو بعدی غیر خطی داد ههای گرانی سنجی ناحیه مغان با استفاده از روش مارکوارت لونبرگ ، مجله علوم زمین، شماره ،١٩( ٧٤)، ١٣-٢٠

    Annecchione M. A., Chouteau M., Keating P., 2001, Gravity interpretation of bedrock topography: the case of the Oak Ridges Moraine, southern Ontario, Canada. J. Appl. Geophys., 47, 1, 63–81.

    Barbosa VCF, Silva JB, Medeiros WE.,1997,Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 62(6):1745–1757

    Barbosa VCF, Silva JBC., 1994,Generalized compact gravity inversion. Geophysics 59(1) 57–68.

    Barbosa,Valéria CF, and João BC Silva., ,2011,Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data." Geophysical Prospecting 59.6: 1021-1034.

    Bhattacharya, B. K., and Navolio, M. E., 1975, Digital convolution for computing gravity and magnetic anomalies due to arbitrary bodies: Geophysics, 40, 981-992.

    Bott MHP.,1960, The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys J Int 3(1):63–6

    Chakravarthi,V.,1995, Gravity interpretation of nonoutcropping sedimentary basins in which the density contrast decreases parabolically with depth. Pure and Applied Geophysics 145.2: 327-335.

    Fotouhi M, 1973, A Comprehensive Review of Geology and Oil Possibilities in Moghan Area. NIOC, Geological Report, 348 pp

    Gadirov V. G., Gadirov K. V., Gamidova A. R., 2016,The deep structure of Yevlakh-Agjabedi depression of Azerbaijan on the gravity-magnetometer investigations. Geodynamics, 20, 1, 133–143.

    Jafarzadeh M, Harami RM, Friis H, Amini A, Mahboubi A, Lenaz D.,2014, Provenance of the Oligocene-Miocene Zivah Formation, NW Iran, assessed using heavy mineral assemblage and detrital clinopyroxene and detrital apatite analyses. J Afr Earth Sc 89:56–71

    Litinsky V. A., 1989,Concept of effective density: Key to gravity depth determinations for sedimentary basins. Geophysics, 54, 11, 1474–1482.

    Mojica, O.F., and Bassrei, A., 2015, Lanczos bi diagonalization method for parallel 3-D gravity inversionapplication to basement relief definition: 85th Annual International Meeting, SEG, Expanded Abstracts.

    Morgan, N. A., and Grant, F. S., 1963, High speed calculation of gravity and magnetic profiles across two-dimensional bodies havingan arbitrary cross-section: Geophys. Prospect., 11, 10-15.

    Murthy I. V. R., Krishna P. R., Rao S. J., 1988, A generalized computer program for two dimensional gravity modeling of bodies with a flat top or a flat bottom or undulating over a mean depth. J. Assoc. Explor. Geophys., 9, 93–103.

    Murthy I. V. R., Rao S. J., 1989: A FORTRAN 77 program for inverting gravity anomalies of two-dimensional basement structures. Comput. Geosci., 15, 7, 1149–1156.

    1. Muro, R. Escobedo, L. Spector and R. Coppinger, “Wolf-pack (Canis Lupus) Hunting Strategies Emerge from Simple Rules in Computational Simulations,” Behavioural Processes, Vol.88, No.3, pp.192-197, 2011.

    Pallero JLG, Fernandez-Martinez JL, Bonvalot S, Fudym O .,2015, Gravity inversion and uncertainty assessment of basement reliefvia Particle Swarm Optimization. J Appl Geophys 116:180–191

    Rao C. V., Chakravarthi V., Raju M. L., 1994, Forward modelling: Gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions. Comput. Geosci., 20, 5, 873–880.

    1. Mirjalili, S. M. Mirjalili and A. Lewis.,2014 ,Grey Wolf Optimizer, Advances in Engineering Software, Vol.69, pp.46-61.

    Silva, J.B.C., Costa, D.C.L., and Barbosa, V.C.F., (2006), “Gravity inversion of basement relief and estimation of density contrast variation with depthGeophysics, 71, 5, pp: 51–58.

    Snieder, R., 1998 ,The role of nonlinearity in inverse problems. Inverse Problems 14.3

    Talwani, M., Worzel, J. and Ladisman, M., 1959, Rapid computation of gravitational attraction of three dimensional bodies of arbitrary shape. Journal of Geophysical research 64(1) 49-59.

    Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics.

    Telford, W. M., Telford, W. M., Geldart, L. P., & Sheriff, R. E.,1990, Applied geophysics (Vol. 1). Cambridge university press.

    Yuan, S., Shangxu W., and Nan T. 2009, Swarm intelligence optimization and its application in geophysical data inversion. Applied Geophysics 6.2: 166-174.