Modeling the earth magnetic temporal variant based on Gauss-Markov process and estimating the magnetic anomaly of the terrains by the UAV.

Authors

Abstract

In this paper, an online method is presented to estimate the magnetic anomaly of the earth by the sensor mounted on the unmanned aerial vehicle (UAV) without relying on the ground stations data. At first, the influential factors and important components in the magnetic field of the regions have been introduced.  Then, using the data of a magnetic observatory, the temporal variation component is modeled. By removing the core field (namely, IGRF or international geomagnetic reference field) and the temporal variation from the magnetic field measured by the mobile sensor, the magnetic anomaly can be determined at any location. Finally, the method is validated with Iznik Geomagnetic Observatory station data.

Keywords


شاهسونی، ه.، 1400، مروری بر استفاده از پهپاد در مغناطیس سنجی هوابرد، نشریه پژوهشهای ژئوفیزیک کاربردی، (3)7، 227-240.
قدس، ع.، 1395، مقدمه‌ای بر روش‌های مغناطیس سنجی و گرانی سنجی، بخش علوم زمین دانشگاه تحصیلات تکمیلی درعلوم پایه زنجان.
Aroyehun, M.T., 2022, Aeromagnetic Survey as Reconnaissance Technique for Groundwater Exploration in a Typical Southwestern Nigeria Basement Complex, FUOYE Journal of Engineering and Technology, https://doi.org/10.46792/fuoyejet.v7i4.949.
Chulliat, A., and et al., 2015, The US/UK World Magnetic Model for 2015-2020: Technical Report, National Geophysical Data Center, NOAA
C. Du, C., and et al.,2022, Mitigation Methods of Short-time Diurnal Magnetic Noise in Airborne Magnetic Survey, 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS), Shenyang, China, , 374-378, https://doi.org/ 10.1109/ACCTCS53867.2022.00083.
Gao, Q., and et al., 2020, Compensation Method for Diurnal Variation in Three-Component Magnetic Survey, Applied Sciences,10(3), 986.
Haberle, V., and et al., 2022, Direct Determination of Geomagnetic Baselines during Quiet Periods for Low‐and Mid‐Latitude Observatories, Journal of Geophysical Research: Space Physics, 127(8), p.e2022JA030407.
Janzhura, A.S. and Troshichev, O.A., 2008, Determination of the running quiet daily geomagnetic variation, Journal of Atmospheric and Solar-Terrestrial Physics, 70(7) , 962-972.
Luyendyk, A.P.J., 1997, Processing of airborne magnetic data. Journal of Australian Geology & Geophysics, 17(2), 31-38.
Maus, S., and McLean, S., 2015, The US/UK World Magnetic Model for 2010-2015, National Geophysical Data Center, NOAA.
Mandea, M.,. Purucker. M., 2005, Observing, Modeling, and Interpreting Magnetic Fields of the Solid Earth, Surveys in Geophysics 26(4), 415-459.
 Mandrikova, O., Polozov, Y., and Khomutov, S., 2022, Wavelet Model of Geomagnetic Field Variations and Its Application to Detect Short-Period Geomagnetic Anomalies. Applied Sciences, 12(4), p.2072.
Meyer, B.,Chulliat, A., Saltus, R., 2017, Derivation and Error Analysis of the Earth Magnetic Anomaly Grid at 2 arc min Resolution Version 3(EMAG2v3) ,Geochemistry ,Geophysics, Geosystems, https://doi.org/10.1002/2017GC007280
Nair, M., and et al., 2021, Next Generation High-Definition Geomagnetic Model for Wellbore Positioning, Incorporating New Crustal Magnetic Data. the Offshore Technology Conference, Virtual and Houston, Texas, August. Paper Number: OTC-31044-MS doi: https://doi.org/10.4043/31044-MS
Peng, X., Wei, Y., and Zou, W., 2022, Airborne Navigation by Geomagnetic Field Based on LSTM. In Proceedings of 11th International Congress, 81, 132-140.
Pilkington, M., 1997, 3-D magnetic imaging using conjugate gradients, GEOPHYSICS, 62(4),1045-1346
Qiu, Sh., and et al., 2022, Observations and Analysis of the Mid‐Latitude Atmospheric Electric Field during Geomagnetic Activity, Journal of Geophysical Research: Space Physics 127.11, e2022JA030785.
Rasmussen, C.E., and Williams, C.K.I., 2006, Gaussian Processes for Machine Learning, The MIT Press, ISBN 0-262-18253-X.
Riabova, S.A., 2022, Study of the Multifractality of Geomagnetic Variations at the Belsk Observatory. Doklady Earth Sciences, 507(2).
Rato, R.T., Ortigueira1, M.D. and Batista A.G., 2008, On the HHT, its problems, and some solutions, Mechanical Systems and Signal Processing, 22(6), 1374-1394.
Su, W., 2022. Magnetic Anomaly Data Detection of Local Marine Geomagnetic Field Model considering Robust Trend Surface Scientific Calculation Algorithm. Scientific Programming, 2022. https://doi.org/10.1155/2022/4055976
Sushchenko, O., and et al., 2022, Airborne Sensor for Measuring Components of Terrestrial Magnetic Field, 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, , 687-691, doi: 10.1109/ELNANO54667.2022.9926760.
Su, Sh., Chen, Sh. and Zhao, H., 2022, Taylor Polynomial Spatial Reference Field Method for Field Geomagnetic Diurnal Variation Reduction. Izvestiya, Physics of the Solid Earth 58(6) 981-991.
Vichare G., and Rajaram R., 2009, Comparative study of models of Earth’s magnetic field derived from Oersted, CHAMP and SAC-C Magnetic Satellite Data,J. Ind. Geophys. Union, 13(1), 33-42.
  Yamazaki Y., and et al., 2011, An empirical model of the quiet daily geomagnetic field variation, Journal of Geophysical Research: Space Physics, 116(A10), https://doi.org/10.1029/2011JA016487
Zhao, X., and et al., 2022, Analysis of the geomagnetic component Z daily variation amplitude based on the Geomagnetic Network of China during solar quiet days. Chinese Journal of Geophysics, 65(10), 3728-3742