Comparison of the results of digital filters in forward modeling of time-domain electromagnetic data

Authors

Abstract

In electromagnetic data forward and inverse modeling, digital filters are used. A fast digital filter with millions of repeatable calculations is required for two- and three-dimensional modeling. Henkel's transformations are frequently used to model frequency-domain electromagnetic data. In time-domain electromagnetic data modeling, the Henkel, sine and cosine integrals complicate digital filter calculations. The purpose of this paper is to investigate different methods of digital filters for solving time-domain or transient electromagnetic (TDEM or TEM) problems. All common methods were fully coded in "MATLAB" software package, and the outcomes were examined. Then, their modeling results were compared with direct analytical solution and layered earth models, and finally, with the results of the "CR1MD" modeling software. This study shows that while the outputs of digital filtering methods usually overlap, increasing the number of coefficients does not necessarily increase calculation accuracy. The 61 coefficients of the "Kong" method produce better results compared to other digital filtering methods investigated in this research work. The results have also shown that the fast sine transformation method is not suitable for forward and inverse modeling due to its poor end-channel results. However, the numerical sine transformation method and "Key" digital filters can be used in TDEM data modeling.  

Keywords


زارعی، م.، روشندل کاهو، ا.، سیاه‏کوهی، ح. ر.، صادقی، م.، 1391، شناسایی کانال مدفون با استفاده از تبدیل فوریه زمان کوتاه واهمامیختی، مجله ژئوفیزیک ایران، 6 (4)، 95-85
عرب امیری، ع.، 1388، ارائه روشی بهبودیافته جهت مدل‏سازی معکوس داده‏های الکترومغناطیس هلیکوپتری حوزه فرکانس، رسالۀ دکتری معدن، دانشگاه صنعتی شاهرود
آراسته، ه.، جواهریان، ع.، 1389، تصویرسازی لایه‏های نازک با استفاده از نشانگرهای به دست آمده از تجزیه طیفی به روش تبدیل فوریه زمان کوتاه، مجله فیزیک زمین و فضا، 36 (2)، 59-41
Anderson, W.L., 1982, Fast Hankel transforms using related and lagged convolutions: ACM Trans. on Math. Software 8, 344–368.
Anderson, W.L., 1979, Numerical integration of related Hankel transforms of orders 0 and I by adaptive digital filtering, Geophysics, 44, 1287–1305.
Anderson, W.L., 1983, Fourier cosine and sine transforms using lagged convolutions in double-precision (subprograms DLAGFO/DLAGF1). U.S. Geological Survey Open-File Report, 83–320.
Chen, J., Hoversten, G. M., Vasco, D., Rubin, Y., & Hou., Z, 2007, A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data. Geophysics, 72(2), 85–95.
Christensen, N.B., 2016, Fast approximate 1D modelling   and inversion of transient electromagnetic data, Geophysical Prospecting, 64, 1620-1631.
Christensen, N.B., 1990, Optimized fast Hankel transform filters, Geophysical Prospecting, 38, 545–558.
Ghosh, D.P., 1971, The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements, Geophysical Prospecting, 19, 192–217.
Guptasarma, D., 1982, Computation of the time-domain response of a polarizable ground, Geophysics, 47, 1574–1576.
Guptasarma, D., Singh, B., 1997, New digital linear filters for Hankel J0 and J1 transforms, Geophysical Prospecting,  45, 745–762.
Haines, G.V., Jones, A.G., 1988, Logarithmic Fourier transformation, Geophysical Journal of the Royal Astronomical Society, 92, 171–178.
Ingeman-Nielsen, T., Baumgartner, F., 2006, CR1Dmod: A Matlab program to model 1D complex resistivity effects in electrical and electromagnetic surveys, Computers & Geosciences, 32, 9, 1411–1419.
Johansen, H.K., Sorensen, K.I., 1979, Fast Hankel transforms, Geophysical Prospecting, 27.
Key, K., 2012, Is the fast Hankel transform faster than quadrature?, Geophysics, 77 (3), 21-30.
Koefoed, O., Ghosh, D.P., Polman, G.J., 1972, Computation of type curves for electromagnetic depth sounding with a horizontal transmitting coil by means of a digital linear filter, Geophysical Prospecting, 20, 406–420.
Kong, F.N., 2012, Evaluation of Fourier cosine/sine transforms using exponentially positioned samples. Applied Geophysics, 79, 46-54.
Kong, F.N., 2007, Hankel transform filters for dipole antenna radiation in a conductive medium. Geophysical Prospecting, 55, 83–89.
Kong, F.N., Johnstad, S.E., Røsten, T., Westerdahl, H., 2008, A 2.5D finite-element modeling difference method for marine CSEM modeling in stratified anisotropy media. Geophysics, 73 (1), 9–19.
Li, Y. G., & Key, K. 2007, 2D marine controlled-source electromagnetic modeling: Part 1 – An adaptive finite-element algorithm. Geophysics, 72(2), 51-62. 
Lucas, S. K., & Stone, H. A., 1995, Evaluating infinite integrals involving Bessel functions of arbitrary order. Journal of Computational and Applied Mathematics, 64(3), 217–231.
Mitsuhata, Y., 2000, 2-D electromagnetic modeling by finite-element method with a dipole source and topography. Geophysics, 65, 465–475.
Mulder, W.A., Wirianto, M., Slob, E.C., 2008, Time-domain modeling of electromagnetic diffusion with a frequency-domain code, Geophysics, 73 (1), 1-8.
Newman, G. A., Alumbaugh, D. L., 1995, Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences1. Geophysical Prospecting, 43(8), 1021–1042.
Newman, G. A., Hohmann, G. W., Anderson, W. L., 1986, Transient electromagnetic response of a three-dimensional body in a layered earth, Geophysics, 51 (8), 1608–1627.
Nissen, J., Enmark, T., 1986, An optimized digital filter for the Fourier transforms. Geophysical Prospecting 34, 897–903.
Raiche, A. P., 1987, Transient electromagnetic field computations for polygonal loops on layered earth, Geophysics, 52 (6), 785–793.
Ryu, J., Morrison H.F. and Ward S.H., 1970, Electromagnetic field about a loop source of current, Geophysics, 35, 862-896.
Singh, N. P., Utsugi, M., Kagiyama, T., 2009, TEM response of a large loop source over a homogeneous earth model: A generalized expression for arbitrary source-receiver offsets, Pure and Applied Geophysics, 166 (12), 2037–2058.
Spies, B.R., Eggers, D.E., 1986, The use and misuse of apparent resistivity in electromagnetic methods: Geophysics, 51, 1462–1471.
Spies, B.R., Frischknecht, F., ,1991, Electromagnetic Sounding. Electromagnetic Methods in Applied Geophysics.
Talman, J.D., 1978, Numerical Fourier and Bessel transforms in logarithmic variables. Journal of Computational Physics, 29 (1), 35–48.
Tang, Z., Dong, X., Wang, X., & Ding, Z., 2015, Oligocene-Miocene magnetostratigraphy and magnetic anisotropy of the Baxbulak section from the Pamir-Tian Shan convergence zone, Geochemistry, Geophysics, Geosystems, 16(10), 3575–3592.
Tiwari, A. K., Maurya, S. P., Singh, N. P., 2018, TEM Response of a Large Loop Source over the Multilayer Earth Models, International Journal of Geophysics.
Vandergraft, S. J., 2014, Introduction to Numerical Computations, Academic Press.
Ward, S. H., Hohmann, G. W., 1987, Electromagnetic theory for geophysical applications, in M. N. Nabighian, ed., Electromagnetic methods in applied geophysics, v.1, Theory: SEG, 53–129.
Wait, J.R., 1987, Electromagnetic Wave Theory, John Wiley & sons.
Werthmüller, D., Mulder A. W., Slob, E. C., 2021, Fast Fourier transform of electromagnetic data for computationally expensive kernels, Geophysical Journal International,226 (2) , 1336-1347.
Zhao, Y., Zhu, Z., Lu, G., & Han, B., 2018, The optimal digital filters of sine and cosine transforms for geophysical transient electromagnetic method. Journal of Applied Geophysics, 150, 267–277.
Xiao, L., Gianluca, F., Bo, Z., Auken, E., & Christiansen, A. V., 2022, Fast 2.5D and 3D Inversion of transient electromagnetic surveys using the octree-based finite element method, Geophysics, 87(4), 267-277.