Geophysical modeling of time domain electromagnetic and potential field data in the Equity silver polymetallic deposit: British Columbia, Canada

Authors

Abstract

The Equity silver mine, located 38 km southeast of Houston, British Columbia, Canada, is a volcanic-hosted sulfide deposit associated with intrusive activity. The original prospect (locally referred to as the Sam Goosly prospect) was a new discovery found as a result of regional silt geochemical surveys conducted by Kennco Exploration (Western) Ltd in 1967. Further investigations confirmed the existence of two distinct mineralized zones, the Main zone and the Southern Tail zone. The purpose of this research is to provide useful three-dimensional (3D) physical property products that can directly be employed in locating and identifying feeder areas related to polymetallic mineralization in the Equity silver area in central British Columbia, Canada. In this research work, airborne gravity, magnetic and electromagnetic data from the study area were used. The data inversions were performed using the UBC-GIF GRAV3D, MAG3D and EM Flow, suite of algorithms for the gravity, magnetic, and AEM data respectively. The products were 3D inversion models of density contrast, magnetic susceptibility, and electrical conductivity, and integrated products combining the individual physical property models. For the study area, surface geological observations, 3D inversion results of airborne gravity, magnetic and electromagnetic data were integrated to build a 3D geological model to identify mineral targets. Finally, a prospect zone was discovered with higher density contrast and higher electrical conductivity property compared to the surrounding environment. The thickness of this part was found to be between 30 and 60 meters and extended to a depth of about 200 meters from the surface.

Keywords


جعفر زاده، و.، نجاتی کلاته، ع.، و آقاجانی، ح.، 1394، مدل­سازی وارون سه­بعدی داده­های گرانی سنجی با روش لی­-اولدنبرگ، کتابخانه دانشگاه صنعتی شاهرود.
شادمان، م.، تخم­چی، ب. و خیراللهی، ح.، 1391، کاربرد خوشه بندی در نقشه­های شبه زمین­شناسی با استفاده از داده­های ژئوفیزیک هوابردی، علوم مهندسی معدن، دوره هفتم، شماره شانزدهم، صفحه 12-1.
عبدالهی شریف، ج.، امام علی پور، ع.، علی پور، ع.، و مختاریان اصل، م.، 1389، جایگاه مدل­سازی سه­بعدی ذخایر معدنی در بررسی­های زمین­شناسی اقتصادی، تعیین ذخیره و ژنز آن­ها (با بررسی موردی بر روی گروهی از ذخایر سنگ تزئینی استان آذربایجان غربی)، زمین شناسی اقتصادی ایران، صفحه 59-51.
قنبری، ه.، عرب­امیری، ع.، ابراهیمی، س.، مهری، م.، 1393، مدل­سازی وتفسیر داده­های پلاریزاسیون القایی و مقاومت ویژه در محدوده­های اکتشافی شریف آباد، شمال غرب بردسکن، نشریه پژوهش­های  ژئوفیزیک کاربردی، دوره 6، شماره 1، صفحات 23-13.
نوروزی، غ. و غلامی، س.، 1384، تحلیل و مدل­سازی داده­های ژئوفیزیکی (IP, RS, M) در محل اندیس معدنی مس سوناجیل، نشریه دانشکده فنی، شماره2، جلد39، ص 253 تا 265.
Abedi, M, Norouzi, Gh.H, Fathianpour, N & Gholami, A, 2015, Geological structure imaging from airborne electromagnetic and magnetic data, a case study in Kalat-e-Reshm area, Iran, Arabian Journal of Geosciences 8, 425-435.
Abedi, M, Norouzi, Gh.H, Fathianpour, N & Gholami, A, 2013, Approximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyre copper unit in Iran. Journal of Mining & Environment. 4 (2): 133-146.
Abedi, M, Fournier, D, Devriese, S.G.R. & Oldenburg, D.W., 2018, Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran. Journal of Applied Geophysics. 152: 188-202.
Alarifi, S.S., Kellogg, J.N. and Ibrahim, E, 2018, Gravity, aeromagnetic and electromagnetic study of the gold and pyrite mineralized zones in the Haile Mine area, Kershaw, South Carolina, Journal of Applied Geophysics.
Alldrick, D., Lin, M., (2007); Geology of the Equity Silver Area, central B.C.; B.C. Geological Survey, Open File 2007-9.
Auken, E., Christiansen, A.V., Jacobsen, B.H., Foged, N., Sørensen, K.I., 2005. Piecewise 1D laterally constrained inversion of resistivity data. Geophysical Prospecting. 53 (4): 497-506.
Brown, R.F., 2009, GEOCHEMICAL AND GEOPHYSICAL TECHNICAL REPORT On The SILVER HOPE PROPERTY For FINLAY MINERALS LTD.
Cyr, J.B., Pease, R.B. and Schroeter, T.G., 1984, Geology and Mineralization at Equity Silver Mine, Economic Geology, Volume 79, pages 947-968.
Dransfield, M., Airborne gravity gradiometry–the state of the art, Redistribution subject to SEG license.
Garrie, D., 2009, Report on a Helicopter-Borne AeroTEM System Electromagnetic & Magnetic Survey, Quest West, Central B.C., Canada.
Ghari, H, Oskooi, B, Bastani, M, 2020, Multi-Line 1D Inversion of Frequency-Domain Helicopter-Born Electromagnetic Data with Weighted 3D smoothness Reqularization: A Case Study from North Iran. Pure and Applied Geophysics. 177 (11), 5299-5323.
 
Li Y. and Oldenburg D.W., 1996, 3-D inversion of magnetic data. GEOPHYSICS, VOL. 61, NO. 2, P. 394-408, 18 FIGS.
Li Y. and Oldenburg D.W., 1998, 3-D inversion of gravity data. GEOPHYSICS, VOL. 63, NO. 1, P. 109-119,14 FIGS.
Murthy, B.S.R., 2007, Airborne Geophysics and the Indian Scenario, J. Ind. Geophys. Union Vol.11, No.1, pp.1-28.
Macnae, J., King, A., Stolz, N., Osmakoff, A. and Blaha, A., 1998, Fast AEM data processing and inversion. Explor. Geophys. 29. 163–169. https://doi.org/10.1071/EG998163.
Mahmoodi, O. and Maxeiner, R.O., 2019, Processing of Airborne Magnetic, Electromagnetic and Gravity Gradiometry Data for the Bigstone Lake Area, East-central Saskatchewan, Miscellaneous Report 2019-4.2, Paper A-4, 12p.
Oldenburg, D.W., Li, Y. and Farquharson, C.G., 1998, Applications of geophysical inversions in mineral exploration. University of British Columbia, GEOPHYSICS, The Leading Edge 17 (4), 461-465.
Panteleyev, A., 1995, Subvolcanic Cu-Au-Ag (As-Sb), in Selected British Columbia Mineral Deposit Profiles, Volume 1 - Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 79-82.
Rajagopalan, SH., Carlson, J. and Wit, D., 2007, Kimberlite exploration using integrated airborne geophysics, ASEG Extended Abstracts, 1, 1-5.
Ramazi, H. and Mostafaie, K., 2013, Application of integrated geoelectrical methods in Marand (Iran) manganese deposit exploration. Arabian Journal of Geosciences. 6 (8): 2961-2970.
 
Telford, W.M., Geldart, L.P. and Sheriff, R.E., 1990, Applied Geophysics. Cambridge. Cambridge University Press. http://doi.org/10.1180/minmag. 1982.046.341.32.
Wisén, R., Auken, E., Dahlin, T., 2005. Combination of 1D laterally constrained inversion and 2D smooth inversion of resistivity data with a priori data from boreholes. Near Surface Geophysics. 3 (2): 71-79.
Zhdanov, M.S, Alfouzan, F.A., Cox, L., Alotaibi, A., Alyousif, M., Sunwall, D. and Endo, M, 2018, Large-Scale 3D Modeling and Inversion of Multiphysics Airborne Geophysical Data: A Case Study from the Arabian Shield, Saudi Arabia, Minerals.
Zhdanov, M.S., New Advances in Regularized Inversion and Imaging of Gravity, Magnetic, and Electromagnetic Data, Consortium for Electromagnetic Modeling and Inversion, University of Utah, Salt Lake City, EGM 2007 International Workshop.