Joint inversion of gravity and magnetic data using total variation stabilizer and cross-gradient constraint

Authors

Abstract

It is well-known that the solution of the individual potential field inversion problem, either gravity or magnetic, is non-unique. One efficient strategy to reduce the uncertainty of the solution, and to improve the obtained results, is the simultaneous joint inversion of two or more data sets. In this case, different geophysical data sets are used simultaneously in an inversion algorithm. Depending on the coupling between different model parameters, the algorithm provides the solutions, which satisfy the observed data and coupling constraint. Combined with regularization, this is an effective strategy to obtain a reliable subsurface model. In this study, an algorithm for the joint inversion of gravity and magnetic data using anisotropic total variation (TV) stabilizer is developed. The anisotropic TV stabilizer consists of the individual L1-norm of the gradient of the model parameters in three orthogonal directions. Therefore, our algorithm preserves the edge of the subsurface targets and provides focus models. Here, the relationship between different model parameters is enforced using the cross-gradient coupling. This constraint uses the model topology in order to enhance the structural similarity of the reconstructed models. Then, the information from both data sets can be used to provide reliable models. This simplifies the interpretation of the subsurface targets. The developed algorithm is validated on two different synthetic examples. The results indicate that the algorithm is practical and can provide focus and similar models. Finally, we invert the gravity and magnetic data obtained over kimberlite pipes BK54 and BK55 in Orapa, Botswana. The reconstructed models are consistent with the geological and borehole information from the survey area.

Keywords


Blakely, R. J., Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge.
Constable, S. C., Parker, R. L. & Constable, C. G., 1987.                  Occam's inversion: A practical algorithm for generating smooth models   from   electromagnetic sounding data, Geophysics, 52 (3), 289-300.
Cunion, E., 2009. Comparison of ground TEM and VTEM responses over kimberlite in the Kalahari of Botswana: Exploration Geophysics, 40, 308– 319, doi: 10.1071/EG09019.
Devriese, S., Davis, K. & Oldenburg, D. W., 2017. Inversion of airborne geophysics over the DO-27/DO-18 kimberlites — Part 1: Potential fields, Interpretation, 5 (3), T299–T311.
Field, M., Gibson, J. G., Wilkes, T. S., Gababots, J. & Khujwep, P., 1997. The geology of the Orapa A/K1 kimberlite, Botswana: Further insight into the emplacement of kimberlite pipes: Proceedings of the 6th International Kimberlite Conference, 155–157.
Fregoso, E. & Gallardo, L. A., 2009. Cross-                                       gradients joint 3D inversion with applications to                   gravity and magnetic data, Geophysics, 74 (4), L31-L42.
Gallardo, L. A. & Meju, M. A., 2003.  Characterization of              heterogeneous near-surface materials by joint 2D               inversion of DC resistivity   and   seismic    data,             Geophysics. Res. Lett., 30 (13), 1658, doi: 10.10 29/2003GL017370.                                                                           
Gallardo, L. A. & Meju, M. A., 2004. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints, Journal of Geophysical Research, 109, B03311.
Gallardo, L. A., 2007. Multiple cross-gradient joint inversion for geospectral imaging, Geophys. Res. Lett., 34 (19), L19301.
Haber, E. & Oldenburg, D. W.,   1997.   Joint inversion:   a             structural approach, Inverse Problems, 13, 6377.
Haber, E. & Holtzman Gazit, M., 2013. Model Fusion and Joint Inversion, Surv. Geophys., 34, 675-695.            
Lawson, C. L., 1961. Contribution to the Theory of Linear Least Maximum Approximation, Ph.D. thesis, University of California.
 
Li, Y. & Oldenburg, D. W., 1996. 3-D inversion of magnetic data, Geophysics, 61 (2), 394-408.            
Li, Y. & Oldenburg, D. W., 1998. 3-D inversion of gravity              data, Geophysics, 63 (1), 109-119.
Matende, K. & and Mickus, K., 2021. Magnetic and           gravity investigation of kimberlites in north-central              Botswana. Geophysics, 86 (2), B67–B78.                                                                                                  
Power, M. & Hildes, D., 2007. Geophysical strategies for kimberlite exploration in northern Canada: Proceedings of Exploration 07-Fifth Decennial International Conference of Mineral Exploration, 1025–1031.                 
Pilkington, M., 1997.    3-D   magnetic     imaging     using             conjugate gradients, Geophysics, 62 (4), 1132-                     1142.
Rao, D. B., and Babu, N. R., 1991. A rapid method for three dimentional modeling of magnetic anomalies, Geophysics, 56, 1729-1737.
Tryggvason, A & Linde, N., 2006. Local earthquake (LE) tomography with joint inversion for P and S-wave                velocities using structural constraints, Geophysical Research Letters, 33, L07303, doi:10.1029/2005GL0, 25485.                                                                          
Vatankhah, S., Renaut, R. A., Liu, S., 2020. A unifying                              ­framework for the widely used stabilization of potential    field   inverse    problems,    Geophysical   Prospecting, 68, 1416-1421.   
Vatankhah, S., Shuang Liu, Rosemary Anne Renaut,                                                                                                                                   ­Xiangyun Hu, Jarom David Hogue, and    Mostafa Gharloghi, 2022. An Efficient Alternating Algorithm for the Lp-Norm   Cross-Gradient Joint  Inversion of Gravity and ­Magnetic Data Using the 2-D Fast Fourier Transform, IEEE TRANSACTIONS ON GEOSCIENCE  AND ­REMOTE SENSING, vol. 60, pp. 1-16.