Investigation of pore types distribution in lateral and vertical directions using rock physics modeling in wells of an Iranian carbonate reservoir

Authors

Abstract

Different depositional environments and their subsequent diagenetic processes usually result in various rock textures with complex pore structure in carbonate rocks. This study considers Fahliyan carbonate formation in an Iranian oil field within the Abadan plain to quantify pore shapes using a rock physics model. In this modeling, the aspect ratios of different pore shapes and their volume fractions are calculated using differential effective medium theory, taking into account the pore shape effect on the elastic moduli estimation. Different pore shapes together with their aspect ratios and volume fractions are quantified using differential effective medium theory, and then, it is used further to predict elastics logs by Xu-Payne modeling. The results indicate that two pore types of reference pores and stiff pores can be characterized as the main pores in Fahliyan carbonate formation. This conclusion is confirmed by formation micro imager (FMI) log and core information.

Keywords


قرهچلو،س.،کدخدائی، ع.،امینی، ع.وسهرابی، س.، 1394، تعیینانواعمنافذمخزنآسماریبااستفادهاز نگارانحرافسرعتوتشدیدمغناطیسهستهای (NMR) دریکیازمیادیننفتیجنوبغرب. مجله پژوهش نفت، 82، 15-31.
میرکمالی، م، ا.، جواهریان، ع.،  حسنی، ح.، صابری، م. ر. و ذبیحی، س.، 1398، تعیین نوع منافذ با استفاده از مدلسازی فیزیک سنگی در یکی از مخازن کربناته ایران. چهارمین سمینار ژئوفیزیک اکتشافی نفت ، اردیبهشت ماه 1398 تهران.
Abdollahie Fard, I., Braathen, A., Mokhtari, M. and Alavi, S. A., 2006, Interaction of the Zagros Foldthrust belt and the Arabian type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran. Petroleum Geoscience, 12, 347–62
Anselmetti, F.S. and Eberli, G.P., 1993, Controls on sonic velocity in carbonate rocks. Pure and Applied Geophysics, 141 (2), 287– 323.
Anselmetti, F.S. and Eberli, G.P., 1999. The Velocity-deviation log: a tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs. AAPG Bulletin, 83, 450–466.
Anselmetti, F.S., Luthi, S. and Eberli, G.P., 1998, Quantitative characterization of carbonate core systems by digital image analysis. AAPG Bulletin, 82, 1815–1836.
Berryman, J.G., 1992, Single scattering approximations for coefficients in Biot’s equations of poro elasticity. Journal of the Acoustical Society of America, 91, 551–571.
Gerard, R.E., Philipson, C.A., Manni F.M. and Marschall M.D., 1992, Petrographic Image Analysis: An Alternate Method for Determining Petrophysical Properties. Automated Pattern Analysis in Petroleum Exploration, 249-263.
Kumar, M. and Han, D., 2005, Pore shape effect on elastic properties of carbonate rocks.75th Annual International Meeting. 1477–1480 SEG, Expanded Abstracts.
Kuster, G.T. and Toksöz, M.N. 1974, Velocity and attenuation of seismic waves in two-phase media, Part I: Theoretical formulations. Geophysics, 39, 587–606.
Lucia, F.J., 1999, Carbonate Reservoir Characterization. New York, Springer-Verlag.
Markov, M., Levine, V., Mousatov, A. and Kazatchenko E., 2005, Elastic properties of double-porosity rocks using the differential effective medium model. Geophysical Prospecting, 53, 733–754.
Markov, M., Kazatchenko, E. and Mousatov, A., 2006, Compressional and shear wave velocities in multicomponent carbonate media as porosity functions.  SPWLA 47th Annual Logging Symposium, June 4-7.
Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The rock physics handbook: tools for seismic analysis in porous media. Cambridge University Press, Cambridge.
Mirkamali, M. S., Javaherian, A., Hassani, H., Saberi, M.R. and Hosseini, S.A., 2020, Quantitative pore-type characterization from well logs based on the seismic petrophysics in a carbonate reservoir. Geophysical Prospecting, 1-22
Misaghi, A., Negahban S., Landrø, M. and Javaherian, A., 2010, A comparison of rock physics models for fluid substitution in carbonate rocks. Exploration Geophysics, 41, 146–154.
Mollajan, A. and Memarian, H.,  2016, Rock physics-based carbonate pore type identification using Parzen classifier. Journal of Petroleum Science and Engineering, 145, 205-212
Pan, J.G., Wang, H.B., Li, C. and Zhao, J.G., 2015, Effect of pore structure on seismic rock-physics characteristics of dense carbonates. Applied Geophysics, 12.
Saberi, M.R., 2017, A closer look at rock physics models and their assisted interpretation in seismic exploration. Iranian Journal of Geophysics, 10 (5), 71–84.
Vanorio, T., Scotellaro C. and Mavko, G., 2008, The effect of chemical and physical processes on the acoustic properties of carbonate rocks. The Leading Edge 27, 1040–1048.
Wood, A.W., 1955, A Textbook of Sound. New York: McMillan Co.
Xu S.and Payne M.A. 2009. Modeling elastic properties in carbonate rocks. The Leading Edge 28, 66–74.
Zhao, L., Nasser, M. and Han, D.H., 2013, Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophysical Prospecting, 61, 827–841.
Zhao, L., Yao, Q., Han, D., Yan, F. and Nasser, M., 2016, Characterizing the effect of elastic interactions on the effective elastic properties of porous, cracked rocks. Geophysical Prospecting, 64, 157-169.