Exploration of iron and chromite by geological and geophysical studies in Shovin area, Sistan and Bluchestan Province

Authors

Abstract

The study area is geologically and potentially capable of mineralization of iron and chromite, and thus, there are many mines and ore deposits of such ore minerals at short distances in the area.  This area is located nearby ophiolite and ultramafic assemblages in which considerable mines of iron and basic metals are observed and explored. Considering the economical concentration potential of iron and chromite in this area, some studies on a regional scale have previously been performed. Here, we have investigated Shovin mineralized area for further exploratory studies. Our magnetometric studies reveal that no iron-rich ore deposit is observed in this area and the high magnetic intensities indicate the presence of magnetic minerals in ultramafic rocks. High magnetic intensities are due to the presence of a dyke and the existence of ultramafic rocks. The presence of a buried mass with a density of about 4.4 g/cm3 is proved based on modeling of the gravity data obtained from the area. Thus, the presumption of the presence of a chromite mass in the study area is highly possible.

Keywords


آزاد، م .، کنشلو، م.، کامکار روحانی، ا.، 1392، به کارگیری روش آنالیز کریجینگ فاکتوری در فیلتر کردن ساختارهای داده‌های گرانی‌سنجی منطقه معدنی کرومیت فاریاب، م. فیزیک زمین و فضا، جلد 39 ،شماره 4 ،61 -72 .
آقاجانی، ح.، 1391، انجام پیمایش و مطالعات ثقل‌سنجی در محدوده کرومیت شرق سبزوار، طرح پژوهشی، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود.
انتشارات جغرافیایی و کارتوگرافی گیتاشناسی نوین، 1398، نقشه گردشگری استان سیستان و بلوچستان.
سازمان زمین‌شناسی و اکتشافات معدنی کشور، 1995، نقشه 1:250000 زاهدان.
سامانی، ب.، اشتری، ش.، a1371، تکوین زمین‌شناسی ناحیه سیستان و بلوچستان، علوم زمین، شماره 4، سازمان زمین‌شناسی کشور، 25-14.
سامانی، ب.، اشتری، ش.، b1371، چرخه‌های فلززایی و مدل متالوژنی ناحیه سیستان و بلوچستان، علوم زمین، شماره 5، سازمان زمین‌شناسی کشور، 35-26.
کامکار روحانی، ا.، 1387، پردازش، مدل‌سازی، تحلیل و تفسیر داده‌های ژئوفیزیکی (گرانی و مغناطیس) برای اکتشاف کرومیت در منطقه فاریاب، طرح پژوهشی، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود.
 
Adagunodo, T. A., Sunmonu, L. A. Adeniji, A. A., 2015, An overview of magnetic method in mineral exploration, Journal of Global Ecology and Environment, 3(1): 13-28.
Amobi Adebisi, M., 2018, Ground magnetic survey for the investigation of Iron ore deposit at Oke-Aro in Iseyin east, south-western Nigeria, International Journal of Geosciences, 9(7).
Bishop, J. R., and Lewis, R. J. G., 1992, Geophysical signatures of Australian volcanic hosted Massive Sulfide deposits, Economic Geology, 87: 913-930.
Carlson, T. N., and Ripley, D. A., 1997, On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sensing of Environment, 62(3): 241-252.
Chander, G., Markham, B. L., and Helder, D. L., 2009, Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment, 113(5): 893-903.
Clark, D. A., 1999, Magnetic petrology of igneous intrusions: implications for exploration and magnetic interpretation, Exploration Geophysics, 30(2): 5-26.
Ganiyu, S. A., Badmus, B. S., Awoyemi, M. O.,Akinyemi, O. D., and Olurin, O. T., 2012, Upward continuation and reduction to pole process on aeromagnetic data of Ibadan Area, South-Western Nigeria, Earth Science Research, 2(1): 66-84.
John, M. R., 1997, An introduction to applied and environmental geophysics, John Wiley, 796 pages.
Joshua, E. O., Layade, G. O., Akinboboye, V. B., Adeyemi, S. A., 2017, magnetic mineral exploration using ground magnetic survey data of Tajimi area, Lokoja, Global Journal of Pure and Applided Sciences, 23.
Hornika, E., Targosz, p., Loska, M., Wojdyla, M., 2020, Complex geophysical investigation in search of chromite deposites at Ljuboten Greenfield site,  Conference ProceedingsNSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining, Volume 2020, pp: 1 – 5.
Kogel, J. E., Trivedi, N. C. and Barker, J. M., (Eds.), 2006, Industrial Minerals and Rocks: Commodities, Markets, and Users, SME (Society for Mining, Metallurgy, and Exploration), 1556p.
Moazam, S., Aghajani, H., Rezaie, M., 2019, Edge detection of chromite lenses using curvature gravity gradient tensor, Journal of Analytical and numerical method in mining enginerring, 9(19): 101-111.
Paterson, N. R., and Reeves, C. V., 1985, Applications of gravity and magnetic surveys: The state-of-the-art in 1985, Geophysics, 50(12): 2558-2594.
Sampio, E. E. S., Batista, J. C., Santos, E. S. M., 2021, Interpretation of geophysical data for iron ore detailed survey in Laje, Bahia, Brazil, An Acad Bras Cienc, 93(1).
Scott, W. J. and Geo, P., 2014, Geophysics for mineral exploration.
Siemon, B., 2001, Improved and new resistivity _depth profiles for helicopter electromagnetic data,  Journal of Applied Geophysics, 4: 250-269.
Telford, W. Geldart L. & Sheriff R., 1990, An Introduction to Applied Geophysics, Cambridge University Press. New York, pp 283-292 & 522-577.
Yaghubpur, A., 2005, Mineral deposits of Iran: a brief review, in mineral resources and development, mineral resources and development, Edited by G. S. Roonwal, K. Shahriar and H. Ranjbar, Daya, 191-202.
Zhang, J., Zeng, Z., Zhao, X., Li, J., Zhou, Y., Gong, M., 2020, Deep Mineral Exploration of the Jinchuan Cu–Ni Sulfide Deposit Based on Aeromagnetic, Gravity, and CSAMT Methods, Mineral, 10(2).