Geophysical modeling of electrical resistivity and induced polarization data for exploration of building stones: A case study - Atashkooh travertine

Authors

Abstract

The study area is situated near to the city of Nimvar, 15 km east of Mahallat,  in Markazi Province. This area is located at the border of two structural zones of Sanandaj-Sirjan and Urmia-Dokhtar in terms of the geological division. The exposed geological units in the study area often include shale, marl, sandstone, conglomerate, and limestone sequences with strata extending (north)west-(south)east and a slope to the northeast. The low-slope Plio-Quaternary travertine stone has sporadically occurred within these geological units as an unconformity unit. In first step of geophysical investigations, to evaluate the efficiency of the geoelectric method, laboratory measurements of the electrical resistivity property were performed on the samples taken from the travertine stone and associated tailings. As the laboratory results in differentiating geological units on the basis of electrical properties were acceptable, then electrical resistivity and induced polarization surveys using a combination of dipole-dipole and pole-dipole electrode arrays were carried out in Atashkooh travertine area. These surveys were conducted along three survey lines using electrode spacings of 10 and 15 meters, and as a result, 850 electrical measurements were collected by using Canadian GDD geoelectric measuring equipment with a power of 3600 watts. The ultimate goal of this study is to explore possible travertine depositsthat are buried under an overburden layer or soil and tailings from old mining activities. After processing observations, the raw electrical data, obtained  along each survey line, were inverted to image possible two-dimensional (2D) zones of travertine lens occurrence. The results of the 2D inverse modeling were also visualized in three-dimensional (3D) form to better capture the geological trend of the sedimentary units. Considering the electrical resistivity values of various geological units in the Atashkooh area and constructing a blocky model across each survey line, and also, estimating the values of resistivity and chargeability, a geological model was attributed individually to each survey line. Due to high electrical resistivity values of the travertine outcrops, we could only detect one target along the first survey line at a depth of 15 to 20 m that subsequently needed to be excavated for more details. In addition, the quality of the proposed geological models, based on the geophysical investigations, was confirmed by digging two exploratory boreholes in the area. The results indicate that the geoelectric surveys yield valuable information for the exploration of travertine building stones.

Keywords


سلیمانی، ک.، عرب امیری، ع.ر.، کامکار روحانی، ا.، شمس الدینی نژاد، م.، مومنی، ف.، ۱۳۹۷. بررسی صحت و دقت نتایج حاصل از برداشتهای ژئوالکتریک در تعیین عمق و ضخامت لایه بوکسیتی در یکی از ذخایر بوکسیت جاجرم .  نشریه پژوهش های ژئوفیزیک کاربردی، دوره ۴، شماره ۲، ص. ۲۲۵-۲۳۵
قنبری، ه.، عرب­امیری، ع.، ابراهیمی، س.، مهری، م.، 1399، مدلسازی و تفسیر داده­های پلاریزاسیون القایی و مقاومت ویژه در محدوده اکتشافی شریف آباد، شمال غرب بردسکن، نشریه پژوهش‌های ژئوفیزیک کاربردی، دوره6، شماره1، صفحات 13-23
گزارش بازدید و تهیه نقشه زمین‌شناسی 1:1000 معدن تراورتن آتش‌کوه. مهندسین مشاور پارس اولنگ. تیرماه 95.
نوروزی، غ.ح.، 1392، روشهای الکتریکی در ژئوفیزیک اکتشافی، انتشارات دانشگاه تهران، چاپ دوم، 375 ص.
Allaia, R., Patella, D., Mauriello, P., 2007, Application of geoelectrical 3D probability in a test-site of the archaeological park of Pompei(Naples, Italy), Journal of geophysics and engineering, 5:67-76.
Aristodemou, E., Thomas-Betts, A., 2000, DC resistivity and induced polarization investigations at a waste disposal site and its environments. Journal of Applied Geophysics 44, 275–302.
Aydın, A., Yağız, S., Özpınar, Y., Semiz, B., 2005, Investigation of travertine properties using geophysical methods. Proceedings of 1st International Symposium on Travertine, September 21-25, 2005, Denizli-Turkey.
Babaei, M., Abedi, M., Norouzi, Gh.H., Kazem Alilou, S., 2020, Geostatistical Modeling of Electrical Resistivity Tomography for Imaging Porphyry Cu Mineralization in Takht-e-Gonbad Deposit, Iran, Journal of Mining & Environment, Vol. 11, No. 1.
Barker, R.D., White, C.C. and Houston, J.F.T., 1992, Borehole siting in an African accelerated drought relief project, Hydrogeology of Crystalline Basement Aquifers in Africa (Geological Society Special Publication vol 66), ed. E. P. Wright and W. G. Burgess (London: The Geological Society) pp., 183–201.
Billi, A., Filippis, L.D., Poncia, P.P., Sella, P., Faccenna, C., 2016, Hidden sinkholes and karst cavities in the travertine plateau of a
highly-populated geothermal seismic territory (Tivoli, central Italy). Geomorphology 255, 63-80.
Binley, A., Daily, W., 2003. The performance of electrical methods for assessing the integrity of geomembrane liners in landfill caps and waste storage ponds. Journal of Environmental & Engineering Geophysics 8, 227.
Cardarelli, E., Di Filippo, G., 2009. Electrical resistivity and induced polarization tomography in identifying the plume of chlorinated hydrocarbons in sedimentary formation: a case study in Rho (Milan - Italy). Waste Management & Research. 27: 595-602.
Carruthers, R.M. and Smith, I.F., 1992, The use of ground electrical survey methods for siting water-supply boreholes in shallow crystalline basement terrains, Hydrogeology of Crystalline Basement Aquifers in Africa (Geological Society Special Publication vol 66), ed. E. P. Wright and W. G. Burgess (London: The Geological Society), pp 203–20.
Chambers, J.E., Kuras, O., Meldrum, P.I., Ogilvy, R.D. and Hollands, J., 2006, Electrical resistivity tomography applied to geologic, hydrogeologic and engineering investigations at a former waste-disposal site, Geophysics, 71 B231–9.
Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., Moarefvand, P. and Afzal, P. 2012, Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran. Nonliner Processes in Geophysics. 19: 431-438.
De Carlo, L., Perri, M.P., Caputo, M.C., Deiana, R., Vurro, M., Cassiani, G., 2013, Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-la-masse method, Journal of Applied Geophysics, 98:1-10.
Dentith, M., Mudge, S.T., 2014, Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press, p. 516.
Doulati Ardejani, F., Jodeiri Shokri, B., Moradzadeh, A., Soleimani, E. and Jafari, M.A., 2008, A combined mathematical geophysical model for prediction of pyrite oxidation and pollutant leaching associated with a coal washing waste dump. International Journal of Environmental Science and Technology. 5 (4): 517-526.
Ferdows, S.M. and Ramazi, H., 2015, Application of the fractal method to determine the membership function parameter for geoelectrical data (case study: Hamyj copper deposit, Iran). Journal of Geophysics and Engineering. 12 (1): 909-921.
Flores, C. and Peralta-Ortega, S.A., 2009, Induced polarization with in-loop transient electromagnetic soundings: A case study of mineral discrimination at El Arco porphyry copper, Mexico. Journal of Applied Geophysics. 68 (3): 423-436.
Gadallah, M.R. and Fisher, R., 2009, Exploration Geophysics. Berlin. Springer. http://doi.org/ 10.1007/978-3-540-85160-8.
Geotomo software Malayisia, “Res2DInv (ver. 3.4), Copyright_c”, 1995–2018, http://www.geoelectrical.com.
Golub, G.H. and van Loan, C.F., 1989, Matrix computations. The John Hopkins Un. Press.
Gomez, E.P., Parviainen, A., Hokkanen, T. and Ruskeeniemi, K.L., 2010, Integrated geophysical and geochemical study on AMD generation at the Haveri Au-Cu mine tailings, SW Finland. Environmental Earth Science. 1: 1435-1447.
Grandjean, G. and Gourry, J.C., 1996, GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece), J. Appl. Geophys. 36 19–30.
Grasmueck, M., 1996, 3D Ground penetrating radar applied to fracture imaging in gneiss, Geophysics 61, 1050–64.
Gurin, G., Tarasov, A., Ilyin, Y. and Titov, K., 2015, Application of the Debye decomposition approach to analysis of induced-polarization profiling data (Julietta gold-silver deposit, Magadan Region), Russian Geology and Geophysics. 56: 1757-1771.
Jodeiri Shokri, B., Doulati Ardejani, F. and Moradzadeh, A. (2016). Mapping the flow pathways and contaminants transportation around a coal washing plant using the VLF-EM, Geo-electrical and IP techniques-A case study, NE Iran. Environmental Earth Sciences. 75 (1): 1-13.
Kadıoğlu, S., 2008, Photographing layer thicknesses and discontinuities in a marble quarry with 3D GPR visualization, J. Appl. Geophys. 64, 109–14.
Kozhevnikov, N.O., Antonov, E.Y., Zakharkin, K. and Korsakov, M. (2014). TEM surveys for search of taliks in areas of strong fast-decaying IP effects. Russian Geology and Geophysics. 55 (12): 1452-1460.
Loke, M.H. and R. D. Barker, 1995, Least-squares deconvolution of apparent resistivity pseudosections, Geophysics, vol. 60, no. 6, pp. 1682–1690.
Loke, M.H., 2000, Topographic modelling in resistivity imaging inversion. 62nd EAGE Conference & Technical Exhibition Extended Abstracts, D-2.
Loke, M.H. and Dahlin, T., 2002. A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. Journal of Applied Geophysics, 49, 149-162.
Loke, M., 2004. Tutorial: 2-D and 3-D electrical imaging surveys, http://www.geotomosoft.com/.
López-González, A.E., Tejero-Andrade, A., Hernández-Martínez, J.L., Prado, B., Chávez, R.E., 2019, Induced Polarization and Resistivity of Second Potential Differences (spd) with Focused Sources Applied to Environmental Problems. Journal of Environmental and Engineering Geophysics. 24 (1): 49–61.
Madun, A., Tajudin, S.A.A., Sahdan, M.Z., Dan, M.F.M., Talib, M.K.A., 2018, Electrical resistivity and induced polarization techniques for groundwater exploration. International Journal of Integrated Engineering. 10(8): 56-60.
Mashhadi, S.R., Mostafaei, K. and Ramazi, H.R., 2017, Improving bitumen detection in resistivity surveys by using induced polarization data. Exploration Geophysics. Published online: https://doi.org/ 10.1071/EG17032.
Mashhadi, S.R. Ramazi, H., 2018, The Application of Resistivity and Induced Polarization Methods in Identification of Skarn Alteration Haloes: a Case Study in the Qale-alimoradkhan Area. Journal of Environmental and Engineering Geophysics. 23 (3): 363-368.
Medeiros, W.E., 1987, Eletro-resistividade aplicada à hidrogeologia do cristalino: um problema de modelamento bidimensional, Diss. de Mestrado UFBA.
Medeiros, W. E. and Lima O. A. L., 1990, A geoelectrical investigation for ground water in crystalline terrains of central Bahia, Brazil, Ground Water, 28, 518–23.
Mostafaie, K. and Ramazi, H., 2015, Application of electrical resistivity method in sodium sulfate deposits exploration, case study: Garmab, Iran. Journal of Biodiversity and Environmental Sciences. 6 (2): 2220-6663.
Mostafaei, K., Ramazi, H., 2018, 3D model construction of induced polarization and resistivity data with quantifying uncertainties using geostatistical methods and drilling (Case study: Madan Bozorg, Iran). Journal of Mining and Environment. 9(4): 857-872. doi: 10.22044/jme.2018.6852.1516.
Nguyen, F., S. Garambois, D. Jongmans, E. Pirard, and M. H. Loke, 2005, Image processing of 2D resistivity data for imaging faults, Journal of Applied Geophysics, vol. 57, no. 4, pp. 260–277.
Öğretmen, Z., Şeren, A., 2014, Investigating fracture–cracked systems with geophysical methods in Bayburt Kıratlı travertine. J. Geophys. Eng. 11, 1-13.
Omosanya, K. O., Mosuro, G. O. and Azeez, L., 2012, Combination of geological mapping and geophysical surveys for surface-subsurface structures imaging in mini-campus and methodist Ago-Iwoye NE areas, southwestern Nigeria, J. Geol. Min. Res., 4, 105–17.
Porsani, L. J., Sauck, W. A. and Junior, A. O. S., 2006, GPR for Mapping fractures and as a guide for extraction of ornamental granite from a quarry: a case study from southern Brazil, J. Appl. Geophys. ,58, 177–87.
Qarqori, Kh., Rouai, M., Moreau, F., Saracco, G., Dauteuil, O., Hermitte, D., Boualoul, M., Veslud, C.L.C.D., 2012, Geoelectrical Tomography Investigating and Modeling of Fractures Network around Bittit Spring (Middle Atlas, Morocco). International Journal of Geophysics Volume 2012, 1-13.
Ramazi, H. and Mostafaie, K., 2013, Application of integrated geoelectrical methods in Marand (Iran) manganese deposit exploration. Arabian Journal of Geosciences. 6 (8): 2961-2970.
Richards, J., Wilkinson, D., Ullrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, Northwest Iran. Econ. Geol. 101, 1455-1496.
Rucker, D.F., Noonan, G.E. and Greenwood, W.J., 2011, Electrical resistivity in support of geological mapping along the Panama Canal, Eng. Geol., 117, 121–33.
Silva, C. C. N., Medeiros, W. E. and Neto, P. X., 2004, Resistivity and ground-penetrating radar images of fractures in a crystalline aquifer: a case study in Caicara farm—NE Brazil, J. Appl. Geophys., 56, 295–307.
Stocklin, J., 1977, Structural Correlation of the Alpine Ranges between Iran and Central Asia. Mémoires de la Société Géologique de France, 8, 333-353.
Stocklin, J., 1968. Structural history and tectonics of Iran: a review. AAPG bulletin, 52 (7), 1229-1258.
Telford, W.M., Geldart, L.P. and Sheriff, R.E., 1990, Applied Geophysics. Cambridge. Cambridge University Press. http://doi.org/10.1180/minmag. 1982.046.341.32.
Yalçıner, C., 2013, Investigation of subsurface geometry of fissure–ridge travertine with GPR, Pamukkale, western Turkey, J. Geophys. Eng., 10.
Yang, J., liu, Z.H. and Wang, L., 2008, Effectiveness of Natural Field Induced Polarization for Detecting Polymetallic Deposits. Earth Science Frontiers. 15 (4): 217-221.
Zhou, W., B. F., Beck and J. B., Stephenson, 2000, Reliability of dipole– dipole electrical resistivity tomography for defining Depth to bedrock in covered karst terranes, Environ. Geol., 39, 760–6.