Detection of Pardisan fault zone around Milad Tower using morphotectonic investigations and ambient vibrations HVSR technique

Authors

Abstract

Investigation of geometric and morphological properties of active faults, as seismic sources, is one of the most fundamental steps for assessing seismic hazard in urban areas. Due to the tectonic setting of Tehran metropolis and its location at the southern foothills of the Central Alborz, as part of the Alpine-Himalayan seismic belt, it has experienced several large and moderate earthquakes in the past. Therefore, identification of active faults and collection of information about them in this urban area are essential. Since some of the fault zones in this area are buried in the Quaternary alluvial deposits, implementation of subsurface techniques, such as seismography, remains inevitable to identify the geometric characteristics of these faults and trace them at depth. The operational complexities and costs of seismic operations in urban areas enforce us in this study to utilize ambient vibrations along the lines of microtremors and microseisms as one of the passive seismic methods. In this study, we first identify surface deformations related to the activity of faults by conducting morphotectonic investigations to detect blind fault zones around the Milad Tower. Then, seismic profiles have been designed and collected according to the perceived position and strike of fault structures and the Pardisan anticline. Ambient vibrations are processed along the seismic profile using the horizontal to vertical components spectral ratio (HVSR) method to estimate dynamic parameters of the Quaternary sediments. The dynamic parameters of the sediments include predominant frequency and resonance amplitude of waves in deposits, and determination and visualization of them in a two-dimensional (2D)cross-section eable us to estimate the thicknesses of the sediments and depths of anomalies. As a result of examining the anomalies in the subsurface structure and their coherency with the morphotectonic investigations, evidence of the activity of the Pardisan blind fault zone has been identified and presented.

Keywords


بربریان، م.، قریشی، م.، ارژنگ­روش، ب. و ا. مهاجر اشجعی (1364)، پژوهش و بررسی ژرف ­نوزمین­ساخت، لرزه­زمین­ساخت و خطر زمین­لرزه-گسلش در گستره­ی تهران و پیرامون، گزارش شماره­ 56، سازمان زمین­شناسی کشور.
Abbassi, M. R. and Y. Farbod (2009), Faulting and folding in quaternary deposits of Tehran’s piedmont (Iran), Journal of Asian Earth Sciences, 34(4), pp. 522–531. doi: 10.1016/j.jseaes.2008.08.001.
Allen, M. B., Ghassemi, M. R., Shahrabi, M., Qorashi, M. (2003), Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran, Journal of Structural Geology, 25(5), pp. 659–672. doi: 10.1016/S0191-8141(02)00064-0.
Bard, P. Y. (2004), The SESAME project: an overview and main results, Engineering, S Participants - Proc. of 13th World Conf. on Earthquake.
Bard, P. Y. (2008), Foreword: The H/V technique: Capabilities and limitations based on the results of the SESAME project, Bulletin of Earthquake Engineering, 6(1), pp. 1–2. doi: 10.1007/s10518-008-9059-4.
Bertelli, T. (1872), Osservazioni sui piccoli movimenti dei pendoli in relazione ad alcuni fenomeni meteorologici del pd Timoteo Bertelli barnabita. Available at: https://books.google.com/books?hl=en&lr=&id=SCZeoq3Z7AQC&oi=fnd&pg=PA1&ots=F8Qc_aqfRQ&sig=RMbEAzDcdV0C8e6vECGc4fBD1mk (Accessed: June 25, 2020).
Bignardi, S., Zeid, N., Corradini, E., Santarato, G. (2017), The HVSR technique from array data, speeding up mapping of paleo-surfaces and buried remains. The case of the Bronze-Age site of Pilastri (Italy), SEG Technical Program Expanded Abstracts, 36, pp. 5119–5124. doi: 10.1190/segam2017-17746745.1.
Bignardi, S., Yezzi, A.J., Fussello. S., Comelli, A. (2018), OpenHVSR - Processing toolkit: Enhanced HVSR processing of distributed microtremor measurements and spatial variation of their informative content, Computers and Geosciences. Elsevier Ltd, 120, pp. 10–20. doi: 10.1016/j.cageo.2018.07.006.
Bonnefoy-Claudet, S., Cotton, F. and Bard, P. Y. (2006), The nature of noise wavefield and its applications for site effects studies. A literature review, Earth-Science Reviews, 79(3–4), pp. 205–227. doi: 10.1016/j.earscirev.2006.07.004.
Delgado, J., López Casado, C., Estévez, A., Giner, J., Cuenca, A., Molina, S. (2000), Mapping soft soils in the Segura river valley (SE Spain): A case study of microtremors as an exploration tool, Journal of Applied Geophysics, 45(1), 19–32. doi: 10.1016/S0926-9851(00)00016-1.
Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J. F., Hinderer.  J., Hatam, Y., Luck, B., Le Moigne, N., Sedighi, M., Khorrami, F. (2010), GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran, Geophysical Journal International, 183(3), pp. 1287–1301. doi: 10.1111/j.1365-246X.2010.04811. x.
Gallipoli, M. R. Stabile, T. A., Giulia, M., Abu-Zeid, N., Leonardo, C., Bignardi, S., Alessandro, R., Marco, M. (2018), Ambient vibration tests on a building before and after the 2012 Emilia (Italy) Earthquake, in 16th European Conference on Earthquake Engineering (16ECEE), European Conference on Earthquake Engineering, pp. 1–10.
Gao, Y., Jiang, Y., Li, B. (2016), Voids delineation behind tunnel lining based on the vibration intensity of microtremors, Tunnelling and Underground Space Technology, 51, pp. 338–345. doi: 10.1016/j.tust.2015.10.032.
Guéguen, P., Cornou, C., Garambois, S., Banton, J. (2007), On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: Application to the Grenoble valley (France), a small apex ratio basin, Pure and Applied Geophysics, 164(1), pp. 115–134. doi: 10.1007/s00024-006-0151-x.
Gutenberg, B. (1958), Microseisms, Advances in Geophysics, 5(C), 53–92. doi: 10.1016/S0065-2687(08)60075-8.
Ibs-von Seht M. and J. Wohlenberg (1999), Microtremor measurements used to map thickness of soft sediments, Bulletin of the Seismological Society of America, 89(1), 250–259.
Jackson, J., Priestley, K., Allen, M., Berberian, M. (2002), Active tectonics of the South Caspian basin, Geophysical Journal International, 148(2), pp. 214–245. doi: 10.1046/j.1365-246X.2002.01588. x.
Kagami, H., Duke, C. M., Liang, G. C., Ohta, Y. (1975), Observation of 1- to 5-second microtremors and their application to earthquake engineering. Part I: comparison with long-period accelerations at the Tokachi-oki earthquake of 1968, Bulletin of the Seismological Society of America, 72 (3): 987–998, 68, pp. 767–779.
Kanai, K. and Y. Tanaka (1961), On Microtremors VIII., Bulletin of Earthquakes Research Institute, 39, 97-114. Available at: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1999787.
Khalili, M. and A. V. Mirzakurdeh (2019), Fault detection using microtremor data (HVSR-based approach) and electrical resistivity survey, Journal of Rock Mechanics and Geotechnical Engineering, 11(2), pp. 400–408. doi: 10.1016/j.jrmge.2018.12.003.
Konno, K. and T. Ohmachi (1998), Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor, Bulletin of the Seismological Society of America, 88(1), pp. 228–241.
Kyaw, Z. L., Pramumijoyo, S., Husein, S., Fathani, T.F.,  Kiyono, J. (2015), Seismic Behaviors Estimation of the Shallow and Deep Soil Layers Using Microtremor Recording and EGF Technique in Yogyakarta City, Central Java Island, Procedia Earth and Planetary Science, 12, pp. 31–46. doi: 10.1016/j.proeps.2015.03.024.
Mousavi, Z., Walpersdorf, A., Walker, R. T., Tavakoli, F., Pathier, E., Nankali, H., Nilfouroushan, F., Djamour, Y. (2013), Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region, Earth and Planetary Science Letters, 377–378, pp. 287–298. doi: 10.1016/j.epsl.2013.07.007.
Nakamura Y. (1989), A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR Railway Tech. Res. Inst., 30(1), 25–33.
Nogoshi, M. and Igarashi, T. (1971), On the Amplitude Characteristics of Microtremor (Part 2), Zisin (Journal of the Seismological Society of Japan. 2nd ser.). Seismological Society of Japan, 24(1), pp. 26–40. doi: 10.4294/zisin1948.24.1_26.
Omori, F. (1909), Preliminary report on the Messina-Reggio earthquake of Dec. 28, 1908, Bulletin of the Imperial Earthquake Investigation Committee,3(2),37-46. Available at: https://ci.nii.ac.jp/naid/110006606486/.
Rieben, H. (1955), The geology of the Teheran plain, American Journal of Science. American Journal of Science (AJS), 253(11), pp. 617–639. doi: 10.2475/ajs.253.11.617.
Ritz, J. F., Bourlès, D., Brown, E. T., Carretier, S., Chéry, J., Enhtuvshin, B., Galsan, P., Finkel, R. C., Hanks, T. C., Kendrick, K. J., Philip, H., Raisbeck, G., Schlupp, A., Schwartz, D. P., Yiou, F. (2003), Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with 10 Be dates , Journal of Geophysical Research: Solid Earth, 108(B3), pp. 1–16. doi: 10.1029/2001jb000553.
Ritz, J. F., Nazari, H., Balescu, S., Lamothe, M., Salamati, R., Ghassemi, A., Shafei, A., Ghorashi, M., Saidi, A.   (2012), Paleoearthquakes of the past 30,000 years along the North Tehran Fault (Iran), Journal of Geophysical Research: Solid Earth, 117(6). doi: 10.1029/2012JB009147.
Scherbaum, F., Hinzen, K. G. and M. Ohrnberger (2003), Determination of shallow shear wave velocity profiles in the cologne, Germany area using ambient vibrations, Geophysical Journal International, 152(3), pp. 597–612. doi: 10.1046/j.1365-246X.2003.01856.x.
Stocklin, J. (1974), Northern Iran: Alborz Mountains, Mesozoic – Cenozoic orogenic Belt, data for orogenic studies, Geological Society, London, Special Publications, 4(1), pp. 213–234. doi: 10.1144/GSL.SP.2005.004.01.12.
Talebian, M., Copley, A. C., Fattahi, M., Ghorashi, M.,            Jackson, J. A., Nazari, H., Sloan, R. A., Walker, R. T. (2016), Active faulting within a megacity: The geometry and slip rate of the Pardisan thrust in central Tehran, Iran, Geophysical Journal International, 207(3), pp. 1688–1699. doi: 10.1093/gji/ggw347.
Uebayashi, H. (2003), Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors, Bulletin of the Seismological Society of America, 93(2), 570–582. doi: 10.1785/0120020137.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., Chéry, J. (2004), Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophysical Journal International, 157(1), pp. 381–398. doi: 10.1111/j.1365-246X.2004.02222. x.
Wathelet M. (2007), Geopsy online documentation. http://www.geopsy.org