Optimal selection of regularization parameter in inversion of magnetotelluric data

Authors

Abstract

The essential issue in the interpretation of magnetotelluric (MT) field data is the solutions for inverse problems that should be in agreement with realistic subsurface geological structures. The MT data inverse modeling is known as an ill posed and nonlinear inverse problem, therefore, in order to prevent the problem of nonunique solution and to obtain meaningful results, it is normally solved using Tikhonov regularization method as the most popular regularization method. Another crucial problem in geophysical data inversion particularly MT field data is to reduce computation time and memory requirements. For achieving more precise inversion solutions, selection of the optimal regularization parameter value is an important factor in the inversion process. The novelty of the present study is to propose a new two-dimensional (2D) algorithm that has been developed for smooth inversion of MT data in which the optimal regularization parameter has been considered. In order to achieve this objective, the forward solution and Lanczos bidiagonalization (LB) algorithm have been implemented in a MATLAB code. For finding an appropriate value for the regularization parameter, adaptive regularization has been used and compared with modified generalized cross-validation (MGCV) and active constraint balancing (ACB) methods. The generated MT data by a 2D synthetic model and Bushli (Nir) geothermal MT field data in Ardabil Province, Iran, have been used in the inversion by the proposed algorithm. The results indicate that the proposed method is more effective and faster than the compared methods especially in less memory usage, decreasing elapsed time, and more accurate solution in the inversion process.

Keywords


رضایی، م.، مرادزاده، ع.، نجاتی کلاته، ع. و آقاجانی، ح.، 1394، برآورد خودکار پارامتر منظم‌سازی به روش تخمینگر نااریب ریسک احتمالی در وارون‌سازی سه بعدی مقید داده‌های مغناطیسی، نشریه پژوهش‌های ژئوفیزیک کاربردی،3، 2، 145-154.
زینال‌پور، ع.، قائدرحمتی، ر.، مرادزاده، ع. و رحمانی، م. ر، 1397، اکتشاف ذخایر زمین گرمایی در منطقه بوشلی- سبلان با استفاده از داده‌های مگنتوتلوریک، مجله پژوهش‌های ژئوفیزیک کاربردی، 4، 2، 171-186.
زینال‌پور، ع.، 1393، پردازش، مدل‌سازی و تفسیر داده‌های مگنتوتلوریک منطقه بوشلی (استان اردبیل) با هدف اکتشاف منابع زمین گرمایی، پایان‌نامه کارشناسی‌ارشد، دانشگاه صنعتی شاهرود.
سانا.، 1375، گزارش زمین‌شناسی ناحیه نیر (جنوب غرب شهرستان اردبیل) شرکت کاوشگران، شرح نقشه زمین‌شناسی 1:20000.
قائد رحمتی، ر.، مرادزاده، ع.، فتحیان‌پور، ن. و سونگ ک. ل.، 1394، بهبود وارون‌سازی دوبعدی داده‌های مگنتوتلوریک با استفاده از روش‌های خودکار انتخاب پارامتر منظم‌سازی، مجله ژئوفیزیک ایران، 9، 30-45.
گویا، ن.، 1381، گزارش طرح اولیه اکتشاف منابع زمین گرمایی در منطقه جنوب سبلان (بوشلی)، سازمان انرژی اتمی ایران، مرکز توسعه انرژی­های نو، بخش زمین گرمایی.
مرادزاده، ع.، 1393، گزارش اکتشاف ذخایر زمین گرمایی در منطقه بوشلی (نیر) توسط داده‌های مگنتوتلوریک، سازمان انرژی­های نو ایران (سانا).
Abedi, M., Gholami, A., Norouzi, G.H., and Fathianpour, N., 2013, Fast inversion of magnetic data using Lanczos bidiagonalization method, J. Appl. Geophys, 90, 126.
Aster, R. C., Borchers, B., and Thurber, C. H., 2013, Parameter estimation and inverse problems, second edition, Academic Press, US, 360.
Bauer, F., and Lukas, M. A., 2011, Comparing parameter choice methods for regularization of ill-posed problems: Mathematics and Computer in Simulation, 81, 1795-1841.
Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52, 289–300.
Engl, H. W., Hanke, M., and Neubauer, A., 1996, Regularization of inverse problems, 375, Kluwer, Dordrecht, the Netherlands, 333.
Farquharson, C. G., and Oldenburg, D. W., 2004, A comparison of automatic techniques for estimating the regularization parameter in non- linear inverse problems: Geophys. J. Int., 156, 411–425.
Geosystem SRL., 2003, A guide to using WinGLink, ver.2. 3. 1.
Haber, E., and Oldenburg, D. W., 2000, A GCV based method for nonlinear ill-posed problems: Computer and Geosciences, 4, 41–63.
Hadamard, J., 1923, Lectures on Cauchy's Problem in Linear Partial Differential Equations: Yale University Press, New Haven.
Hansen, P. C., 1997, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion: SIAM, Philadelphia.
Hansen, P. C., 2010, Discrete inverse problems: insight and algorithms, 7, SIAM, US, 213.
Hansen, P. C., Jensen, T. K., Rodriguez, G., 2007, An adaptive pruning algorithm for the discrete L-curve criterion: J. Comput. Appl. Math., 198, 483–492.
Hansen, P.C., 2007, Regularization Tools Version 4.1 for Matlab 7.3, Numerical Algorithms, 46, 189-194.
Lawson, C. L., and Hanson, R. J., 1974, Solving least squares problems, Prentice Hall, Englewood Cliffs, US, 330.
Lee, S. K., Kim, H., J., Song, Y., and Lee, C., 2009, MT2DInvMatlab- A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion: Computers & Geosciences, 35, 1722-1735.
Li, Y., and Oldenburg, D. W., 1998, 3-D inversion of gravity data, Geophysics, 63, 1, 109.
Li, Y., and Oldenburg, D. W., 1999, 3-D inversion of DC resistivity data using an L-curve criterion: 69th Ann. Int. Meeting of the SEG, Expanded Abstracts, 251–254.
Newman, G. A., and Alumbaugh, D. L., 2000, Three dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophys. J. Int., 140, 410 – 424.
Oldenburg, D. W., and Li, Y., 2005, Inversion for applied geophysics: A tutorial, pp 89-150, In: “Near-surface geophysics”, Butler, D. K., SEG, Investigations in Geophysics, US.
Paige, C. C., and Saunders, M. A., 1982, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Soft. (TOMS), 8, 1, 43.
Rodi, W. L., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66, 174–187.
Rodi, W.L., 1976. A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophysical Journal of the Royal Astronomical Society, 44, 483–506.
Sasaki, Y., 2004, Three dimensional inversion of static-shifted magnetotelluric data: Earth Planets Space, 56, 239–248.
Siripunvaraporn, W., and Egbert, G., 2000, An efficient data sub space inversion method for 2-D magnetotelluric data: Geophysics, 65, 791– 803.
Smith, J. T., and Booker, J. R., 1991, Rapid relaxation inversion of two- and three-dimensional magnetotelluric data: J. Geophys. Res., 96, 3905–3922.
Tikhonov, A. N., and Arsenin, V. Y., 1977, Solution of ill-posed problems: V. H. Winston and Sons.
Vatankhah, S., Renaut, R. A., and Ardestani, V. E., 2014, Regularization parameter estimation for underdetermined problems by the χ2 principle with application to 2D focusing gravity inversion, Inverse Prob., 30, 85002.
Vio, R., Ma, P., Zhong, W., Nagy, J., Tenorio, L., and Wamsteker, W., 2004, Estimation of regularization parameters in multiple image deblurring: Astron. Astrophys., 423, 1179–1186.
Vogel, C. R., 2002, Computational methods for inverse problems, 23, Siam, US, 182.
Wahba, G., 1990, Spline Models for observational data: SIAM, Philadelphia.
Walker, S. E., 1999, Inversion of EM data to recover 1-D conductivity and a geometric survey parameter: MSc thesis, University of British Columbia.
Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least squares inversion with active constraint balancing: Geophysics, 68, 931–941.
Zhdanov, M. S., 2002, Geophysical inverse theory and regularization problems: Elsevier.