A review on the aeromagnetic surveys using unmanned aerial vehicle (UAV)

Author

Abstract

As the technology for unmanned aerial vehicle (UAV) has evolved, miniature sensors have also been developed. By equipping the unmanned aerial vehicles (UAVs) with such sensors, they can be used in various scientific researches. Thanks to the advantages of UAVs like zero risk of fatality, cost-effectiveness, low maintenance and operation costs, high precision positioning system and high versatility, they are used as powerful tools for aeromagnetic surveys. The UAVs can fill the gap between the land data, which are obtained on the surface with high resolution and low coverage, and the data, which are obtained by aircrafts or helicopters with low resolution and high coverage.\

Keywords


Anderson, K., Gaston, K.J., 2013. Lightweight unmanned aerial vehicles will revolutionize spatial ecology., Frontiers in Ecology and the Environment. https://doi.org/10.1890/120150
Barnard, J.A., 2008. The use of unmanned aircraft in oil, gas and mineral e+P activities. 78th Society of Exploration Geophysicists International Exposition and Annual Meeting, SEG 2008 1132–1136.
Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., T. Thiele, S., Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology., Journal of Structural Geology. https://doi.org/10.1016/j.jsg.2014.10.007
Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., Bareth, G., 2014. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing. https://doi.org/10.3390/rs61110395
Brown, P., Beek, T., Carr, C., O’Brien, H., Cupido, E., Oddy, T., Horbury, T.S., 2012. Magnetoresistive magnetometer for space science applications (Measurement Science and Technology (2012) 23 (025902)). Measurement Science and Technology 23. https://doi.org/10.1088/0957-0233/23/5/059501
Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., Gattelli, M., 2015. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing. https://doi.org/10.3390/rs70404026
Caron, R.M., Samson, C., Straznicky, P., Ferguson, S., Sander, L., 2014. Aeromagnetic surveying using a simulated unmanned aircraft system. Geophysical Prospecting 62, 352–363. https://doi.org/10.1111/1365-2478.12075
Cherkasov, S., Kapshtan, D., 2018. Unmanned Aerial Systems for Magnetic Survey. Drones - Applications. InTech, 135–148. https://doi.org/10.5772/intechopen.73003
Cunningham, M., Samson, C., Wood, A., Cook, I., 2018. Aeromagnetic Surveying with a Rotary-Wing Unmanned Aircraft System: A Case Study from a Zinc Deposit in Nash Creek, New Brunswick, Canada. Pure and Applied Geophysics 175, 3145–3158. https://doi.org/10.1007/s00024-017-1736-2
Cunningham, M., Samson, C., Wood, A., Cook, I., Doyle, B., 2016. An experimental aeromagnetic survey with a rotary-wing unmanned aircraft system. SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2129–2133. https://doi.org/10.1190/segam2016-13607329.1
Dash, J.P., Watt, M.S., Pearse, G.D., Heaphy, M., Dungey, H.S., 2017. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing. https://doi.org/10.1016/j.isprsjprs.2017.07.007
Dentith, M., Mudge, S., 2013. Geophysics for the Mineral Exploration Geoscientist. Cambridge University Press.
Dentith, M., Mudge, S.T., 2014. Geophysics for the mineral exploration geoscientist. Cambridge (UK): University Press.
Eck, C., Imbach, B., 2011. Aerial Magnetic Sensing With an Uav Helicopter. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII-1/, 81–85. https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-81-2011
Everett, M., 2013. Near-Surface Applied Geophysics. Cambridge University Press.
Forrester, R., Huq, M.S., Ahmadi, M., Straznicky, P., 2014. Magnetic signature attenuation of an unmanned aircraft system for aeromagnetic survey. IEEE/ASME Transactions on Mechatronics 19, 1436–1446. https://doi.org/10.1109/TMECH.2013.2285224
Funaki, M., Higashino, S.I., Sakanaka, S., Iwata, N., Nakamura, N., Hirasawa, N., Obara, N., Kuwabara, M., 2014. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica. Polar Science 8, 342–356. https://doi.org/10.1016/j.polar.2014.07.001
Funaki, M., Hirasawa, N., Group, A.-P., 2008. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research. Polar Science 2, 129–142. https://doi.org/10.1016/j.polar.2008.05.002
GEM [WWW Document], n.d. URL https://www.gemsys.ca/ (accessed 6.3.20).
Geometrics [WWW Document], n.d. URL https://www.geometrics.com/ (accessed 6.3.20).
Hammack, R., Veloski, G., Sams, J., 2018. Using drone magnetic and LidAR surveys to locate unmarked, abandoned wells prior to unconventional oil and gas development. SPE/AAPG/SEG Unconventional Resources Technology Conference 2018, URTC 2018. https://doi.org/10.15530/urtec-2018-2891559
Hashimoto, T., Koyama, T., Kaneko, T., Ohminato, T., Yanagisawa, T., Yoshimoto, M., Suzuki, E., 2014. Aeromagnetic survey using an unmanned autonomous helicopter over Tarumae volcano, northern Japan. Exploration Geophysics 45, 37–42. https://doi.org/10.1071/EG12087
Hinze, P.W.J., von Frese, R.R.B., Saad, A.H., 2013. Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press.
Hood, P., Ward, S.H., 1969. Airborne Geophysical Methods. Advances in Geophysics 13, 1–112. https://doi.org/10.1016/S0065-2687(08)60508-7
Jackisch, R., Madriz, Y., Zimmermann, R., Pirttijärvi, M., Saartenoja, A., Heincke, B.H., Salmirinne, H., Kujasalo, J., Andreani, L., Gloaguen, R., 2019. Drone-Borne Hyperspectral and Magnetic Data Integration : Otanmäki Fe-Ti-V Deposit in Finland. 11, 1–27. https://doi.org/https://doi.org/10.3390/rs11182084
Kaneko, T., Koyama, T., Yasuda, A., Takeo, M., Yanagisawa, T., Kajiwara, K., Honda, Y., 2011. Low-altitude remote sensing of volcanoes using an unmanned autonomous helicopter: An example of aeromagnetic observation at Izu-Oshima volcano, Japan. International Journal of Remote Sensing 32, 1491–1504. https://doi.org/10.1080/01431160903559770
Koyama, T., Kaneko, T., Ohminato, T., Yanagisawa, T., Watanabe, A., Takeo, M., 2013. An aeromagnetic survey of Shinmoe-dake volcano, Kirishima, Japan, after the 2011 eruption using an unmanned autonomous helicopter. Earth, Planets and Space 65, 657–666. https://doi.org/10.5047/eps.2013.03.005
Kroll, A., 2013. Evaluation of an Unmanned Aircraft for Geophysical Survey. ASEG Extended Abstracts 2013, 1–4. https://doi.org/10.1071/aseg2013ab328
Luyendyk, A.P.J., 1997. Processing of airborne magnetic data. AGSO Journal of Australian Geology & Geophysics 17, 31–38.
Macharet, D.G., Perez-Imaz, H.I.A., Rezeck, P.A.F., Potje, G.A., Benyosef, L.C.C., Wiermann, A., Freitas, G.M., Garcia, L.G.U., Campos, M.F.M., 2016. Autonomous aeromagnetic surveys using a fluxgate magnetometer. Sensors (Switzerland) 16, 1–19. https://doi.org/10.3390/s16122169
Malehmir, A., Dynesius, L., Paulusson, K., Paulusson, A., Johansson, H., Bastani, M., Wedmark, M., Marsden, P., 2017. The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden. The Leading Edge 36, 552–557. https://doi.org/10.1190/tle36070552.1
Nikulin, A., de Smet, T.S., 2019. A UAV-based magnetic survey method to detect and identify orphaned oil and gas wells. Leading Edge 38, 447–452. https://doi.org/10.1190/tle38060447.1
Noriega, G., 2015. Aeromagnetic Compensation in Model Stability , and Robustness. 12, 117–121. https://doi.org/10.1109/LGRS.2014.2328436
Parshin, A. V., Morozov, V.A., Blinov, A. V., Kosterev, A.N., Budyak, A.E., 2018. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-Spatial Information Science 21, 67–74. https://doi.org/10.1080/10095020.2017.1420508
Parshin, A. V., Morozov, V.A., Savin, A., Badmayev, M.-J., 2019. Development of low-cost unmanned aerogeophysical system based on light VTOL aircraft. 271–276.
Parvar, K., Braun, A., Layton-Matthews, D., Burns, M., 2018. UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman. Journal of Unmanned Vehicle Systems 6, 57–69.
Pei, Y., Liu, B., Hua, Q., Liu, C., Ji, Y., 2017. An aeromagnetic survey system based on an unmanned autonomous helicopter: Development, experiment, and analysis. International Journal of Remote Sensing 38, 3068–3083. https://doi.org/10.1080/01431161.2016.1274448
Samson, C., Straznicky, P., Laliberté, J., Caron, R., Ferguson, S., Archer, R., Limited, S.G., 2010. Designing and building an unmanned aircraft system for aeromagnetic surveying. SEG Extended Abstract 29, 1167–1171.
Schultz, G., Mhaskar, R., Prouty, M., Miller, J., 2016. Integration of micro-fabricated atomic magnetometers on military systems. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI 9823, 982318. https://doi.org/10.1117/12.2224192
Scintrex [WWW Document], n.d. URL https://scintrexltd.com/ (accessed 3.6.20).
Singhal, G., Bansod, B., Mathew, L., 2018. Unmanned Aerial Vehicle classification , Applications and challenges : A Review. Preprint.
Sterligov, B., Cherkasov, S., 2016. Reducing magnetic noise of an unmanned aerial vehicle for high-quality magnetic surveys. International Journal of Geophysics 1–7. https://doi.org/10.1155/2016/4098275
Stoll, J., Moritz, D., 2013a. Unmanned aircraft systems for rapid near surface geophysical measurements. 75th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2013 XL, 4–6. https://doi.org/10.5194/isprsarchives-xl-1-w2-391-2013
Stoll, J., Moritz, D., 2013b. Unmanned aircraft systems for rapid near surface geophysical measurements. 75th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2013. https://doi.org/10.5194/isprsarchives-xl-1-w2-391-2013
Tezkan, B., Stoll, J.B., Bergers, R., Großbach, H., 2011. Unmanned aircraft system proves itself as a geophysical measuring platform for aeromagnetic surveys. First Break 29, 103–105.
Tian, J., Wang, L., Li, X., Gong, H., Shi, C., Zhong, R., Liu, X., 2017. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2017.05.002
Wallace, L., Lucieer, A., Watson, C., Turner, D., 2012. Development of a UAV-LiDAR system with application to forest inventory. Remote Sensing. https://doi.org/10.3390/rs4061519
Walter, C., Braun, A., Fotopoulos, G., 2020. High-Resolution Unmanned Aerial Vehicle Aeromagnetic Surveys for Mineral Exploration Targets. 68, 334–339. https://doi.org/10.1111/1365-2478.12914.This
Walter, C.A., Braun, A., Fotopoulos, G., 2019. Impact of three-dimensional attitude variations of an unmanned aerial vehicle magnetometry system on magnetic data quality. Geophysical Prospecting 67, 465–479. https://doi.org/10.1111/1365-2478.12727
Wood, A., Cook, I., Doyle, B., Cunningham, M., Samson, C., 2016. Experimental aeromagnetic survey using an unmanned air system. Leading Edge 35, 270–273. https://doi.org/10.1190/tle35030270.1