Estimation of elastic parameters using multichannel blind inversion of elastic impedance and comparison of it with Bayesian AVO inversion

Authors

Abstract

Elastic parameters can be retrieved from pre-stack seismic data using the concept of the elastic impedance (EI). As the first inversion method in this study, an inversion algorithm is used that recovers the elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion, blocky EI models are obtained from partial angle-stacks. Using total-variation (TV) regularization, each angle-stack is inverted in a multichannel form. The second step involves the inversion of the resulting EI models for elastic parameters. Mathematically, the EIs are linearly described by the elastic parameters in the logarithm domain. Thus, a linear least-square inversion is employed to perform this step. Furthermore, elastic parameters are inverted through linearized Bayesian AVO inversion as the second inversion method, and some posterior distribution for elastic parameters is proposed. Finally, the results of both inversion methods are compared and their advantages and shortages are discussed.

Keywords


عباسی، م. و غلامی، ع.، 1395، وارون­سازی خطی  AVOبه روش بیزی برای تخمین پارامترهای سنگ، نشریه پژوهش­های ژئوفیزیک کاربردی، انتشار آنلاین
Aki, K., and P. G. Richards, 1980, Quantitative seismology: theory and methods: W. H. Freeman and Co.
Berteussen, K. A., and B. Ursin, 1983, Approximate computation of the acoustic impedance from seismic data: Geophysics, 48, 1351–1358.
Buland, A., and H. Omre, 2003, Bayesian linearized AVO inversion: Geophysics, 68, 185–198,
Bosch, M., T. Mukerji, and E. F. Gonzalez, 2010, Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review: Geophysics, 75, 165–176.
Cao, H., Yang, Z. and Li, Y., 2008. Elastic impedance coefficient (EC) for lithology discrimination and gas detection. In SEG Technical Program Expanded Abstracts 2008 (pp. 1526-1530). Society of Exploration Geophysicists.
Cerney, B., and D. Bartel, 2007, Uncertainties in low frequency acoustic impedance models: The Leading
Edge, 26, 74–87Hamid, H., and A. Pidlisecky, 2015, Multitrace impedance inversion with lateral constraints: Geophysics, 80, no. 6, M101–M111.Connolly, P., 1999, Elastic impedance: The Leading Edge, 18, 438–452.
Gholami, A., 2015, Nonlinear multichannel impedance inversion by total-variation regularization: Geophysics, 80(5), R217–R224.
Gholami, A., 2016, A fast automatic multichannel blind seismic inversion for high-resolution impedance recovery: Geophysics, 81(5), V357-V364.
Gholami, A., and M. D. Sacchi, 2013, Fast 3d blind seismic deconvolution via constrained total variation and gcv: SIAM Journal on Imaging Sciences, 6, 2350–2369.
Hamid, H., and A. Pidlisecky, 2015, Multitrace impedance inversion with lateral constraints: Geophysics, 80, no. 6, M101–M111.
Ma, J., Geng, J., and Guo, T., 2011. Using linearized Bayesian method to extract elastic parameters from elastic impedance. In SEG Technical Program Expanded Abstracts 2011 (pp. 2762-2766). Society of Exploration Geophysicists.
Ma, J.F. and Morozov, I.B., 2005. The exact elastic impedance. In CSEG 2005 Annual Meeting Abstracts (pp. 224-227).
Mukerji, T., Mavko, G., and Avseth, A., 2014, Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk: Cambridge University Press.
Zhang, H., Shang, Z., and Yang, C., 2007, A non-linear regularized constrained impedance inversion: Geophysical Prospecting, 55, 819–833.